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Introduction and background

In epitaxial graphene on metal (GOM), the lattice mismatch between
the two materials gives rise to periodic moiré superstructures. The
resulting corrugation may act as a template for well-ordered arrays of
magnetic nanoclusters with promising applications in high-density stor-
age devices. The use of atomistic simulations enables us to study large
systems that are currently inaccessible to DFT. Here we focus on the
archetypal case of ruthenium for which a wealth of experimental and
DFT data are available.[1, 2]

Experimental STM measurements[1]

(a) Graphene on Ir(111): moiré superstructure. (b) Ir clusters deposited on GOM

Goals

• Investigate the stability of deposited clusters

• Study of dynamical effects at finite temperature

Methods

• Assess different Bond-order Potentials (BOPs) by NPT Monte Carlo
simulations for pristine graphene

• Adjust Brenner BOP parameters for metal-metal and carbon-metal
interactions to experimental and DFT data, respectively

• Study moiré geometry for various inplane angles between graphene
and metal substrate

Bond-order potentials

Suitable to highly coordinated material, BOPs contains a built-in cor-
relation between coordination and bond strength:
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VR(r ij) , VA(r ij) : Interatomic repulsive and attractive
pair functions, respectively

B̄ij : Bond-order, depends on the local coordination
and bond angles

The performances of three different BOPs are assessed for pristine
graphene:

Brenner’s BOP[3] : Interactions only between first neighbours

LBOP[4] : Brenner’s BOP including long-range
interactions

LCBOP[5] : BOP including long-range interactions,
with a bond-order expression especially
designed for carbon

Graphene

Thermal excitation causes corrugation of graphene.[13] Consequently,
increase of temperature induces the inplane lattice parameter a to de-
crease, which reflects in a negative thermal expansion coefficient α(T).

Finite Temperature behaviour

• Average bond distances dCC increases with temperature: usual be-
haviour of classical solids

• Minor effects of simulation cell sizes

• BOP and LBOP present contraction of a in qualitative agreement
with DFT[6–8] but overestimate a over a large temperature range

• Only LCBOP exhibits an increase in a near 700 K although it is
closest to DFT results

Thermal expansion coefficient

• Qualitative agreement of BOP and LBOP with references [6-8,11,12]
Qualitative agreement of LCBOP with references [9,10]

• Sign of α(T) not consistent throughout literature (open question)

Remarks

Monte Carlo NPT simulations at P=0 reveal that various BOPs ex-
hibit discrepancies in dCC, a and α(T) depending on the potential used.

Deviation from harmonic (bending) to anharmonic (stretching) cou-
pling modes has been proposed to explain the sign change of α(T).[13]

However this has been questioned by a recent approach based on clas-
sical elasticity theory.[14]

All BOPs present a qualitative agreement with DFT below 700 K in a
and dCC.

Graphene on metal

Atomistic potential and its parameters for
graphene on Ru(0001)

Pure carbon

• Brenner BOP[3] with original parameters

Pure ruthenium

• Embedded Atom Model (EAM), form as in Cleri and Rosato[15]

• Additional dispersion force correction for semi-infinite substrate

• Parameters for Ru adjusted via Monte Carlo fit to experimental data

• Reproduced quantities: lattice constants, cohesive energy, elastic
constants

• Consistent description of the entire system by rewriting the EAM
potential in the form of Brenner BOP

Ruthenium-Carbon

• Brenner BOP form plus a dispersion force correction for semi-infinite
Ru substrate.

• Parameter adjustment via Monte Carlo fit of several equilibrium
structures determined by DFT[2]

– Match the zero forces
– Reproduce adsorption energies of the graphene layer and adatoms

Quantity DFT results Reproduced values

Corrugation of graphene layer 1.44 Å 1.63 Å
Corrugation of topmost ruthenium layer 0.04 Å 0.23 Å

Smallest separation of graphene and topmost graphene layer 2.24 Å 2.12 Å
Average spacing of the uppermost metal layers 2.07 Å 2.14 Å

Adsorption energy of graphene layer -3.9 eV -3.88 eV
Interaction energy of graphene layer -10.0 eV -11.99 eV

Adsorption energy of an adatom at fcc site -2.6 eV -3.97 eV

Moiré geometries for graphene on Ru(0001)
• The periodicity of the moiré superlattice is about one order of mag-

nitude lower than the one of graphene

• In the case of graphene on Ru(0001) two types of moiré are relevant:

– 12 carbon atoms matching 11 ruthenium atoms
– 13 carbon atoms matching 12 ruthenium atoms

• An inplane angle between graphene and the Ru(0001) surface reduces
the size of the moiré supercell a∗:

Graphene on Ru(0001), 12 carbon atoms
matching 11 ruthenium atoms: lattices
aligned

Graphene on Ru(0001), 12 carbon atoms
matching 11 ruthenium atoms: inplane
angle of 6.3 ◦

Moiré supercell edge as function of inplane angle between graphene and Ru(0001)
surface

Adsorption of clusters on GOM

• Energy minimum for adatom is located at hcp site of the moiré su-
percell

• The graphene sheet is closest to the metal surface at the hcp site

Interaction energy of a Ru adatom with the substrate throughout the moiré supercell

Preliminary result: Adsorption energy of Ru55-cluster: -4.47 eV

Ru55-cluster adsorbed on graphene on Ru(0001) at hcp site

Perspectives and future research

• Further improvement of the parameters for the potential: refine Monte Carlo fitting procedure using replica
exchange

• Establish an equivalent potential for systems presenting a lower corrugation (graphene on Ir(111))

• Relaxation of systems with adsorbed clusters

• Study of dynamics at finite temperature of individual and multiple clusters

• Replace the atomistic description of the cluster-substrate interaction by a continous approximation
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