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We study the spin current in different ferromagnetic and antiferromagnetic systems using Monte Carlo simulations. Many new experimental data on the spin resistivity have been shown, var-
ious behaviors have been observed, but there is however no theory which gives a unified mechanism for spin resistivity in magnetic materials. Spin resistivity p has been shown to de-
pend on magnetic ordering stability. At low temperatures T', scattering of itinerants electrons is due to spin-waves. However at high temperatures, p 1is proportional to the spin-spin cor-
relation so that its behavior is very complicated arround the magnetic phase transition of the lattice. Our purpose, is to show a new way to investigate spin transport mechanism.

Model : Hamziltonian € Algorithm

Introduction : Origin € genesis of resistivity

Resistance essentially depends on three mechanisms :

Phonons, static defects and magnons. H = Z Ji j5iSj + Z 1; 055+ Z K j6iG; — eel + DVrn(r)
1, 1,] 1,] D p3
Ptot = Pphonon T Pmagnetic T Pde fects A B C
Our interest focuses on the magnetic contribution to the resistance. A : Interaction between lattice spins limited on first neighbors with J; ; = Jpe™ "4 with r;; = |r; — 7).
B : Interaction of itinerant spins and lattice spins in a sphere radius Dy, I; ; = Ipe™ "9 with r;; = |7} — 7],
¢ 1955-1956: Turov and Kasuya show in a T behavior and predict a constant resistivity after critical C : Interaction between itinerant spins themselves in a sphere radins Dy, K; ; = Koe ™" with ry; = |75 — 7.
temperature 1. !
D : Motion of electrons driven by an applied electric field £, along = axis.
¢ 1958: De Gennes and Friedel relate p to the correlation function. p shows a peak at 7. & : Chemical potential allowing a diffusion by a gradient of electron concentration.
e Recent works: (Kataoka, Zarand, experimental data). Different kinds of behaviors of p at T, de-
pending on materials.
Aim & Interest
Magnetic resistivity attracted interest by ”Giant Magneto Resistance”.
- N
Our motivation come from :
e Aboundance of experimental results.
e Many theorical studies with approximations. . o . . S
. . Discretization of motion does not affect final result if averaging is taken on a large
e Abscence of Monte Carlo simulations. number of micro states.
Our aim is to : Algorithm

1. Perform a standard Monte Carlo thermalization at a given 1" for the lattice.

* Develop a new Monte Carlo method to study spin transport. 2. Inject Ny polarized /non-polarized itinerant spins into the lattice.

Study behavi f ' kind of materilal T.. . . .
B 3. Perform trial move of electrons to reach stationary regime.

e Include interaction between itinerant spins.
4. Perform averaging and determine quantities like R(T), A\(T"), o(T).

e Analyze effects of different physical parameters.

5. Rethermalize lattice and go to step (3) to improve statistical average.

Results : on FCC ferromagnets BCC antiferromagnets and FCC frustrated antiferromagnets

FCC ferromagnets versus 7' for different values FCC fully frustrated antiferromagnet versus T
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At T, p shows a peak, whose origin can be interpreted by 350! Te. ¢ . ® State 2

the scattering of itinerant spins with defect lattice spin
cluster. Peak height depends on magnetic field...
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p versus T" in function of magnetic field B. Parameters are Electrons traveling path depends on the number of 5y, 220 ‘e, .o
J=1,1y=1, Ky =0.5, Dy = Dy = a. Electron density n = 0.5 S|, lattice spins in the D; sphere. 210
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In BCC antiferromagnets p does not show a peak due to
antiferromagnetic ordering. p versus T in state 1 for D1 = a (upper) and D1 = 1.25a (lower).

With NZ — 8, n = 1/4, JS =J = —1.0, [0 — KO — 0.5, D =0.35.
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