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DISSOCIATION CURVES USING DIFFERENT FRAGMENTATION STRATEGIES

The fragmentation strategies displayed in Fig. S1 were also used to determine the Al-fumarate4+CO5 dissociation
energy. Fig. Sla shows a fragmentation in which the stretched Al-O¢cp, bond is contained in one fragment. When a
correlated wavefunction solver CCSD (or AS-UCCSD with large enough active space) is used for a fragment containing
the Al atom and the oxygen of COy (the “AlO” fragment), with RHF or MP2 applied to the remaining parts of the
system, the Al-fumarate+CO4 complex is found to be unbound, with a monotonic decrease of the energy spanning all
adsorbate-adsorbent distances r, (Fig. S1b,c). Such a behavior is inconsistent with brute force classical calculations,
and with expected adsorption properties in MOF's [1, 2]. Fig. S1d also shows a fragmentation consisting of the AlO
fragment, but the rest of the fumarate is considered as one large fragment. The corresponding results in Fig. Sle
show a similar conclusion - Al-fumarate4+COy complex is unbound for large enough active spaces of the AlO fragment.
Hence, for these particular fragmentations, DMET is found to fail in describing the COs binding to the Al site of the
fumarate.

In Fig. Slc,e we also show that the unphysical behaviour is manifested when a sufficiently large amount of correlation
is included by sufficiently large active spaces. Indeed, the 4 qubit AS-UCCSD simulation (with RHF applied to the
non-active fragments, i.e. those fragments not directly involved in the Al-O¢p, bond) shows a bound state (purple
squares), while the 16 qubit counterpart (black squares and black triangles) shows an unbounded state. Spurious
dissociation behaviour can also be obtained when MP2 is used as a fragment solver, and the inset of Fig. Slc shows
this is not exclusively due to the known weaknesses [3] of MP2 for dissociation in some systems.

Fig. S1f shows the same fragmentation as Fig. 2a. Hence the results shown in Fig. S1g are the classical counterparts
to Fig. 2c. For this case, physical bound state dissociation curves without artifacts are observed, yet only when
a mixture of solvers are used. When all fragments are solved with the same post-Hartree-Fock solver (MP2 or
CCSD), discontinuities and/or non-monotonic behaviour is observed. Hence, the use of different solvers (maintaining
democratic mixing), along with a careful choice of fragmentation appears to ameliorate the unphysical dissociation
behaviour.

To summarise these results, no combination of DMET solver methods was found that resulted in qualitatively
correct dissociation curves for larger active spaces when the high level fragment contains the stretched AlO bond,
while in Fig. Slg it is shown that physical dissociation curves are not possible when the same solvers are used on
all fragments (where the stretched bond lies between fragments). By comparing Fig. 2 to Fig. S1, our results show
that small changes in fragmentation lead to large qualitative differences in dissociation behaviour - this is observed
for small changes in fragmentation geometry and solver methods.

ORBITAL CONTRIBUTION TO DMET CORRELATION ENERGY

In this section, the correlation contribution to the total DMET energy is plotted as a function of active space (AS)
size, for all the fragmentations strategies discussed in this work. CCSD and UCCSD are shown for comparison in Figs.
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FIG. S1: a. Fragmentation strategy consisting of the fumarate Al and the O of CO2 (O¢o,) as one fragment (AlO),
the CO of CO; as a separate fragment, and the rest of the fumarate divided into fragments. b. and c. show AFE
curves for fragmentation in a obtained using classical and quantum solvers, respectively. In ¢ quantum AS-UCCSD
is applied to the AlO fragment, while RHF or MP2 is used for all other fragments. The inset of ¢ shows RHF and
MP2 calculations (brute force, no DMET) compared to 4-qubit AS-UCCSD. d. Same as a but the fumarate (not
including the Al bonding to COs) is one large fragment. e. shows AFE curves for fragmentation in d obtained using
classical and quantum solvers. f. Same fragmentation strategy as shown in Fig. 2a, with AFE curves shown in g for
classical solvers. RHF and MP2 solvers for the AlO (b) and Al (g) fragments are also shown for comparison.

S2 - S5. Note that the contribution of correlation for full active spaces is much larger in Figs. S2 and S3 compared
to Figs. S4 and S5, due to the larger number of orbitals contributed by the Ocp, atom in the AlO fragment.

In Fig. S3 it can be seen that for 6 active spatial orbitals, the UCCSD correlation energy is approximately 20 mHa
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FIG. S2: Correlation energy versus active space size for CCSD and UCCSD fragment solvers, using the
fragmentation depicted in Fig.Sla. Nac;_orb refers to the number of active molecular spatial orbitals.
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FIG. S3: Correlation energy versus active space size for CCSD and UCCSD fragment solvers, using the
fragmentation depicted in Fig.S1d. Nct_orp refers to the number of active molecular spatial orbitals.

smaller than CCSD for a comparable AS. This is consistent with the difference in total energies between UCCSD (N,
= 12) and CCSD with 3 HOMO and 3 LUMO spatial orbitals at Al-O¢p, distance r = 2 A. The agreement between
UCCSD and CCSD correlation energies does not improve for a larger AS using the fragmentations from Fig. Sla,d.
At variance, the agreement in correlation energy between UCCSD and CCSD is much better in Figs. S4 and S5. This
translates to better agreement in dissociation curves for a given AS size (the AS-CCSD dissociation curves are not
shown in the main text for brevity). Hence the fragmentations from Fig. 2a and Fig. 2b exhibit better agreement
between UCCSD and CCSD for feasible active space sizes in addition to physical dissociation curves.

CLASSICAL CALCULATIONS OF AL-FUMARATE+CO>

In order to determine the optimal position of the COs molecule interacting with the fumarate molecule, a series
of classical calculations at various levels of theory (including mean-field and wavefunction techniques) were carried
out in which a COs molecule was placed at varying distances and orientations relative to the fumarate. In these
calculations, the internal geometries of the constituents are kept frozen to their isolated configurations. The lack of
inversion symmetry with respect to the horizontal molecular plane prompts the investigation of the lowest energy
incidence angle of CO5 as it approaches the Al center. To this end, we calculate the energy as a function of Al-
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FIG. S4: Correlation energy versus active space size for CCSD and UCCSD fragment solvers, using the
fragmentation depicted in Fig.2a. Nact_orb refers to the number of active molecular spatial orbitals.
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FIG. S5: Correlation energy versus active space size for CCSD and UCCSD fragment solvers, using the

fragmentation depicted in Fig.2b. N,ct_orp refers to the number of active molecular spatial orbitals. For Nyct—orp =
9, 4 occupied and 5 virtual orbitals are used.

FIG. S6: Perpendicular orientation of CO3 molecule relative to the Al-fumarate molecule, corresponding to CO4
angle = 90°.

Oco, distance at perpendicular orientation (relative to the horizontal plane), for the CO5 molecule approaching the
fumarate from “above” and “below” the horizontal plane (where “above” corresponds to Figs. S6 and S7). Results



FIG. S7: Flat orientation of COs molecule relative to the Al-fumarate, CO5 angle = 0°.
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FIG. S8: Total energy of the Al-fumarate+CO4 complex as a function of Al-O distance, for the CO45 molecule
incident from “above” (as in Fig. S6), or from the opposite direction “below”. The latter corresponds to increased
interaction between CO5 and the fumarate oxygens. No dispersion correction has been added.

are plotted in Fig. S8. Following this, Fig. S9 shows the energy as a function of CO5 angle relative to the fumarate
plane (keeping the Al-Cco, distance fixed), in which the CO4 is placed “above” the fumarate plane.

The dependence of fumarate4+COs energy on COs incidence angle was also evaluated for the purpose of determining
the optimal geometry. Solid angle parameters are defined as in Fig. S10, while in Fig. S11 the energy as a function of
solid angle coordinates for the CO5 molecule is reported at the mean-field Hartree-Fock level. This further indicates
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FIG. S9: Total energy of the Al-fumarate+COy complex as a function of CO4 orientation. Distance between Al and
C (of COy) corresponds to 3.197A.

that the minimum energy geometry for the minimal STO-3G basis set corresponds to the CO, at perpendicular
incidence from “above” the fumarate plane (see Fig. S6) with the Al-O¢o, distance at approximately 2 A.

QUANTUM COMPUTATIONAL DMET IN DETAIL

If the exact ground state wavefunction of the full system is known one can construct a projector Pz for fragment x
such that the projected reduced size Hamiltonian (embedding Hamiltonian) H® = P*H P results in the same exact
ground state[4, 5]. As the exact wavefunction is in general unknown, the embedding Hamiltonian is constructed with
a wavefunction approximated by a low level theory such as HF.

The DMET algorithm starts by constructing the Hamiltonian (I;T ) with a localised and orthogonal basis, in which
the domain of each fragment can be specified. Then the algorithm solves the full problem with the HF theory and
calculates the one-electron reduced density matrix (1-RDM) in the localised basis. More precisely, a modified total
Hamiltonian H’ is solved with HF theory,

H =H+ Z Z ufjajaj (S1)

T ijEAT
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FIG. S10: Solid angles of CO3 incident on the Al center of the fumarate.
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FIG. S11: Total energy of the Al-fumarate+CQOy complex as a function of CO5 solid incidence angle. For all
geometries considered, the CO5 molecule at perpendicular incidence from “above” the fumarate plane, with the
fumarate Al facing the COy O atom, corresponds to the minimum energy.

where A” refers to the subspace spanned by fragment x, and aj is a fermionic creation operator in the localised
basis. The extra one-body term in Eq. S1 is the correlation potential that accounts for the effects of correlations on
the 1-RDM. The values of uj; are to be determined such that the 1-RDM on each fragment block matches the 1-RDM
calculated with the high level methods, and they are improved self-consistently as described by Wouters et al.[5]. In
this paper we perform only the one-shot DMET method, which is equivalent with the first iteration of DMET when



the initial correlation potential is zero, thus H =H.

Following the calculation of the one-electron reduced density matrix of the full system, a fragment projector pe
can be constructed based on the HF solution and the embedding Hamiltonian H?® can be expressed [5]. In practice,
the Schmidt decomposition of the HF wavefunction allows one to partition the 1-RDM into a fragment and its
complementary subsystems, and by diagonalising the complementary sub-block of the 1-RDM one can construct a
useful basis (Schmidt basis) in which the fractionally occupied orbitals are kept as bath orbitals and the occupied and
empty orbitals are designated as the environment. The embedding Hamiltonian in the Schmidt basis is

. R 1 St A -
H (pgona) = > (hzg + > Vi - v;fk»Dzl”)cICj 5 Y Viwlldlad —pgoaNe  (S2)
ije ATUB® kleN ijkle AxUB=®

where hj; and V7, are the one and two-electron integrals in the Schmidt basis, respectively, c;r is the corresponding
fermionic creation operator, and B” refers to the subspace of the bath orbitals. The Dj};"" is the one-electron reduced
density matrix of the fully occupied orbitals in the environment. The last term is not the result of the projection, but
it is added to control the charge distribution between the fragment and the bath. N, = Y icar éjél is the particle
number operator for fragment x and pgioba is the global chemical potential, independent of the fragment, and is

determined from the constraint

Z<\I]r (ﬂglobal”Nlem (:u‘global» = Ne (83)

x

where W, (igiobal) is the ground state of the H *(Mglobal) oObtained with a high level method, such as VQE, and
N, is the total number of electrons in the molecule. In practice, this constraint is satisfied iteratively, with initial
value pgiobal = 0. Once the final value of pgional and Uy (pgional) are found the energy of each fragment is obtained
(assuming “democratic” mixing of local RDMs [5]) from

(S4)
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where Pf; = (U, (ptg1oban) |6} W (ttgiobar)) and T = (Vo (gionar) |61 L1 | Vo (ngtonar) -

In Quantinuum’s computational chemistry platform, one may choose to calculate the density matrix for each
fragment either classically or with one of the available quantum algorithms. This enables a mixing of algorithms for
different fragments: less important regions of the molecule can be solved with a cheap classical method, while the
important fragments where the interesting chemistry occurs (in this case the Al-CO; interaction) may be treated
with high accuracy wavefunction methods. The latter can include a quantum computational solver for the fragment
of interest, which allows for the combination of classical and quantum calculation methods for different parts of the
molecule. In addition, we can choose active orbital spaces for different fragments, which allows for more efficient
simulations in terms of the number of qubits and number of interaction terms. Once all these quantities have been
calculated, the total energy of the molecule will consist of a sum of fragment energies E* plus the nuclear repulsion
contribution

E=> E"+ Epuc. (S5)

While many embedding approaches are available [6], DMET is an approach that has been shown to accurately
describe the dissociation of strongly correlated systems whose dissociated state is in general difficult to capture,
even when the system is fragmented to individual atoms [4]. In this work, the energetics of COy dissociation from
the fumarate will be investigated as a means to study the Al-CO, interaction, and for this reason an embedding
approach which is expected to capture the strong coupling between the embedded fragment and its environment, as
well as the static correlation resulting from the dissociation of the fragmented system, is desired. Hence, we select
the DMET approach for this purpose. However, despite these previous works [4], our results show that the predicted
dissociation behavior is highly dependent on the adopted fragmentation strategy. While quantitative differences
between different DMET fragmentations of the same system have been reported recently [5, 7], our work shows that



different fragmentations can result in qualitative differences in the predicted behavior of the total system, even leading
to differing predictions as to whether a chemical complex is bound or unbound.

The variational quantum eigensolver (VQE) [8] is a hybrid quantum/classical algorithm that can variationally solve
for the ground state (or other eigenstates, given appropriate constraints) of a given Hamiltonian. We use VQE as
the parameter optimiser of the UCCSD wavefunction ansatz. The latter has been implemented to support active
orbital spaces, which is useful for controlling the number of qubits in the simulation. This comprises our quantum
computational fragment solver. Note that the UCCSD wavefunction can be written as

[Yucesp) = Ulo) (S6)

where 9 labels the reference state, typically the HF wavefunction, and U/ is the unitary operator constructed from
anti-hermitian excitation generators

where the fermionic excitations 7} are restricted to single and double excitations, and 6; are variational parameters.
Due to the difficulty of implementing U directly in the NISQ era, it is typically decomposed into an ordered product
of tractable operations, which is known as Trotter decomposition [9]

0, (P — 1)

LI | Camanl B (S8)

This is an approximate relation since the generators in the exponent do not commute in general. The first-order
Trotter approximation, utilised in Quantinuum’s computational chemistry platform, is obtained when ¢t = 1. In our
implementation, we order the terms such that single excitations are applied first, followed by double excitations.
Within the singles and doubles, orbital indexes are ordered such that lowest occupied and virtual orbitals are applied
first. We use the same basis sets as the classical calculations to generate the integrals for the UCCSD calculations.

In order to run 16 or more qubit simulations using a classically simulated quantum hardware, high performance
computational resources are required. We utilise Microsoft’s Azure for idealised noise-free simulations. This allows for
the benchmarking of this method without the interference of hardware noise. Hence, results from idealised calculations
are used to study the intrinsic accuracy of this approach. The IBMQ emulator for ibm_lagos is used for simulations
with a noise model (the calibration data for this noise model is available from the authors on request). This allows for
the effect of noise on calculations of a dissociation barrier, and the impact of the choice of error mitigation scheme.
Thus our work sheds light on the theoretical accuracy of this approach, as well as the effect of hardware error and
its mitigation, for systems relevant to carbon capturing MOFs which will serve as a guide to future simulations on
fault-tolerant quantum devices.
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