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ABSTRACT
Facing the need for carbon emission reduction, processes such as
CO2 capture in nanoporous Metal-Organic Frameworks (MOFs)
have emerged. However, such processes still need to be improved,
by understanding the dynamic properties of CO2 molecules when
confined in MOF nanopores. To do so, molecular dynamics (MD)
simulations are run for several millions of iterations, enabling to
accurately compute the CO2 residency time. Nevertheless, this dy-
namical parameter remains challenging to compute by standard
post-processing approaches and may require terabytes of memory
when data are saved after each iteration. To tackle this issue, we de-
veloped a trigger-based in situ approach that saves only the relevant
data. We implement it by instrumenting the LAMMPS MD code
with the SENSEI/Python in situ API. We show that this approach
reduces the quantity of data saved by 4 orders of magnitude and
can be up to 14% faster than traditional MD simulations without in
situ processing.

CCS CONCEPTS
• Information systems→Datamanagement systems; •Human-
centered computing → Visualization systems and tools; •
Applied computing→ Chemistry.
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1 INTRODUCTION
The abatement of greenhouse gases, responsible for deleterious
effects on climate change is an urgent issue of our century. Along
with better energy efficiency and the replacement of fossil fuels
with renewable energies, carbon capture and storage (CCS) is called
to play a key role in the energy transition [20, 33]. In it, the first
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step is the CO2 capture that represents the most expensive brick in
this chain [15]. Among different techniques, CO2 capture from syn-
thetic nanoporous solids like Metal-Organic Frameworks (MOFs) is
currently attracting considerable interest [32]. MOF structures are
comparable to molecular “interlocking building bricks” (molecular
Lego), presenting a quasi-infinite tunability with respect to their
pore sizes and reactivity [9, 29]. While equilibrium properties from
thermodynamics are well documented in the literature, dynamic
properties of CO2 molecules passing through MOF nanopores (also
called cages) are less studied. Nonetheless, such studies are key for
optimizing industrial processes as well as process cost reductions
[25]. To gain insight into CO2 molecular diffusion for practical
applications, diffusion properties of CO2 molecules (called guests)
are determined at the atom scale thanks to molecular dynamics
simulations where CO2 molecules diffuse through the MOF struc-
ture following a Levy’s jump process [28]. In other words, CO2
molecules get stuck in a MOF cage for a while, before promptly
hopping to a neighboring one. A dynamical property of interest in
such dynamics is the guest’s residency time (𝜏) [7], defined as the
averaged characteristic time between successive hoppings.

Molecular simulations are based on atomistic 3D configurations
of a MOF structure made of several thousands of atoms. To reach
robust statistics, simulations need to be run for a large number
of iterations (several millions). Accurately computing 𝜏 from a
traditional post-processing approach would require storing the
CO2 positions after each iteration. The output of the positions
and additional parameters of a system of ∼ 10,000 atoms for one
iteration corresponding to more than 1MB of data, the output of
several millions of iterations requires several terabytes of data, most
of them being unnecessary because of the jump process. To limit the
quantity of data saved to only dynamical events of interest (i.e., CO2
hopping events), we propose to compute in situ the location of a
CO2 molecule among the MOF cages and to trigger data output only
when the molecule hops from one cage to another. Hence, the post-
processing is facilitated and the computation of 𝜏 for various CO2
concentrations is accelerated with a reasonable memory footprint.

We demonstrate the benefit of this approach by instrumenting
the LAMMPS simulation package [30, 34] with the SENSEI [4] in
situ infrastructure and by implementing the in situ analysis and
trigger with Python. We apply it to the prototypical UiO-66(Zr)
MOF structure, however, the proposed methodology is versatile
and can be applied to any other nanoporous materials (other MOFs
structures, zeolites, porous carbons, ...).

2 RELATEDWORK
In the last decades, in situ processing has gained interest among
computational science, high-performance computing, and scientific
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visualization communities [8, 24]. In particular, triggers are gaining
popularity offering automation in the analysis of simulation data,
reducing human-in-the-loop needs [5], and enabling the saving of
only interesting data at a low cost [14, 18]. In situ processing and
triggers can be directly inserted in the time loop of the simulation
[22, 23, 27]. However, the use of these techniques is greatly facili-
tated by emerging in situ infrastructure that provides generic APIs
to tackle a large variety of simulations.

As an example, the first version of Catalyst [2] provides synchro-
nous in situ capabilities, extracting simulation data through the
VTK [31] data model and using ParaView [1] for visualization. The
second version of Catalyst [3] proposes a model based on Conduit
[12] with the possibility to add new implementations. The most
common one remains ParaView Catalyst, but ADIOS [11] imple-
mentation emerges to add in transit capabilities [26]. Some features
also exist in ParaView Catalyst for triggering data output.

Ascent [17] is a flyweight in situ infrastructure that aims at
minimizing execution time, memory usage, and integration effort,
using the Conduit data model for ease of integration and zero-copy
features. It provides tools for in situ analysis and visualization,
including in situ exploration of data via Jupyter Notebooks [13],
and recent efforts include the integration and use of triggers [19].

Each of the in situ infrastructure provides its own set of tools for
in situ analysis but comes with different APIs. As a consequence,
switching to another in situ infrastructure implies a modification
of the code instrumentation, which may be a source of limitation.
To solve this issue, the SENSEI project [4] proposes a "write once,
run everywhere" concept by providing a bridge between several
in situ infrastructures, including Libsim [16], Catalyst, Ascent, and
ADIOS. SENSEI uses VTK as a conversion between the data models
of the simulations and the in situ infrastructures and provides a
Python interface for in situ analysis [6].

In this study, we used SENSEI to instrument LAMMPS, enabling
effortless switch between different in situ infrastructures. Prior
study already instrumented LAMMPS with SENSEI to visualize
data with LibIS [35]. In this paper, we propose to use the Python
interface of SENSEI to develop a trigger-based in situ analysis of
CO2 dynamics inside a MOF.

3 INSTRUMENTATION OF LAMMPS WITH
SENSEI API

The instrumentation of the LAMMPS simulation code with SENSEI
in situ infrastructure can be done in two ways, an intrusive way that
directly modifies the simulation source code and a non-intrusive
way that uses a third-party code for the instrumentation. This non-
intrusive instrumentation is made possible because the LAMMPS
simulation package can be compiled as a dynamic library [34]. In
this work, we decided to instrument LAMMPS in a non-intrusive
way for ease of use for non-expert users and developers. To do so,
we developed a C++ driver that uses LAMMPS API to manage the
simulation and access data and we instrumented this driver with
SENSEI API for in situ analysis.

Our driver takes as input:

• The number of iterations to execute and the frequency of in
situ analysis;

• The input file used for traditional LAMMPS simulations
where the run command used by LAMMPS to determine
the number of iterations to process, is replaced by the run
0 command. This way the time loop management is trans-
ferred to the driver;

• An XML file used by SENSEI to calibrate the in situ analysis.
The driver is organized as a standard LAMMPS simulation. An

initialization step is first performed to initialize LAMMPS and SEN-
SEI with the simulation input file and the XML file, respectively. In
this latter, a data adaptor is created to convert LAMMPS data in the
SENSEI data model. This is done with VTK by converting atoms
and molecules in a vtkPolyData mesh where points correspond to
the atoms and lines correspond to interatomic bonds.

The driver then instantiates a time loop with the requested num-
ber of iterations. During this time loop, each iteration of LAMMPS is
executed using the one("run 1 pre no post no") command pro-
vided in LAMMPS API. At the required in situ frequency, data are
extracted from LAMMPS using the lammps_extract_atom func-
tion. To create the vtkPolyData mesh, the positions of the atoms,
as well as the interatomic bonds are extracted. Per-atom and per-
molecule attributes are also extracted and saved in the vtkPolyData
as Point Data and Cell Data respectively. By default, the variables
of interest are the atom’s velocity, their chemical types, and an
index that determines on which molecule the atom belongs. Other
variables can be requested through the SENSEI XML file such as the
atomic mass, the partial charges, or the kinetic and potential ener-
gies of the atoms. Once the vtkPolyDatamesh has been filled with
appropriate data, the SENSEI bridge is executed and the analysis
predefined by the user in the XML file begins.

Once the number of iterations set by the user is reached, a final-
ization phase occurs for the simulation and the in situ framework
and some time logs are exported.

4 DEVELOPMENT OF A TRIGGERING SYSTEM
FOR SMART DATA SAVING

We are interested here in computing the residency time 𝜏 of CO2
molecules inside MOF cages, namely the averaged time between
two successive hoppings of CO2 molecules in MOF cages. To do so,
we first need, based on the position of a CO2 molecule diffusing
in the MOF, to determine in which cage the molecule belongs.
Once this identification is done, the location is computed after each
iteration and is used as a trigger for data output. Doing so, only
iterations corresponding to CO2 hoppings are recorded, greatly
accelerating the computation of 𝜏 .

4.1 Background of UiO-66(Zr) MOF
The algorithm for the identification of the cage in which a CO2
molecule belongs can be applied to any MOF or nanoporous materi-
als but we illustrate it with the prototypical UiO-66(Zr) MOF. This
crystal is made of zirconium oxide nodes (Figure 1a), bridged by
terephthalic acid ligands (Figure 1b). The overall UiO-66(Zr) struc-
ture is made of a periodic repetition of these metal nodes and lig-
ands throughout the 3D space (Figure 1c), resulting in a nanoporous
structure of 3×2×2 UiO-66(Zr) unit-cells of about 6×4×4 nm3. Each
unit-cell contains tetrahedral and octahedral cages, with diameters
of ∼0.75 nm and ∼1.1 nm, respectively (Figure 1d). The total specific
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Figure 1: Atomistic structure of the UiO-66(Zr) MOF. The
metal oxide nodes are composed of zirconium metal (a), con-
nected by terephthalic acid ligands (b). The overall UiO-66(Zr)
structure is made of a periodic repetition of the metal nodes
and ligands. The full structure consists of 3×2×2 UiO-66(Zr)
unit-cells of about 6×4×4 nm3 (c). Zoom on the octahedral
and tetrahedral cages formed in one unit cell of the UiO-
66(Zr) structure (d).

pore volume of the structure is around ∼0.77 cm3/g, with a specific
surface area of about ∼1160 m2/g, making it a fully nanoporous
MOF (pores <2nm). Such properties and the large experimental
and theoretical literature available on UiO-66(Zr) MOF make it an
ideal structure to gain insights into CO2 mobility in highly confined
pores, as well as an excellent use case to develop an in situ approach
applied to the CO2 capture in MOFs.

4.2 Development of a Python script for in situ
analysis

As already mentioned in Section 2, we use the SENSEI in situ in-
frastructure that allows an easy switch between different in situ
infrastructures. We use in this work the Python interface to de-
velop our in situ analysis and triggering system. We chose Python
because it provides a large number of tools to manipulate data
(NumPy, SciPy, pandas, ...) and it enables us to develop complex
analyses in a few lines of code (less than 800 for this work). In
this work, we use the Python interface of VTK to access the data,
the NumPy package to manipulate data arrays, and the Python
interface of MPI to exchange data among processes.

To develop a Python analysis to be used with SENSEI, we need
to define 3 functions: an Initialize function executed at initial-
ization of SENSEI to check that the requested atom attributes are
present in the driver, an Execute function executed after each iter-
ation that contains the code executed at the in situ frequency set by
the user, and a Finalize function executed at SENSEI finalization
to clean the different data structures and to print time information.

We detail in the following the development of the Execute func-
tion that is split into two parts: the construction of the MOF geom-
etry followed by the extraction of the cage positions executed only
at the first in situ iteration (Section 4.2.1), and the computation of
the CO2 location that triggers data output executed at the in situ
frequency set by the user (Section 4.2.2).

4.2.1 Construction of the MOF geometry. To identify in which cage
a CO2 molecule belongs, the first step is to construct the geometry
of the MOF and to compute the location of the different cages. To
do so, the atomistic data is converted into a vtkUnstructuredGrid
mesh where points correspond to the centers of mass of the metal
nodes, and cells correspond to the MOF pores. The edges of the
cells correspond to the position of the ligands. For the UiO-66(Zr)
MOF, the cells are octahedra or tetrahedra (Figure 1d).

The centers of mass of the metal nodes are computed by extract-
ing the Zr atoms thanks to the type attribute exported from the
driver. For each Zr atom not already flagged as seen, the algorithm
searches the Zr atoms belonging to the same metal nodes, namely
Zr atoms located in a radius of 6Å. We then use VTK to compute
the center of mass of these atoms and mark the corresponding
atoms as seen. As this code is executed in a synchronous in situ
way, it inherits from the parallelization of the simulation, meaning
that data are split among the different processes. This step is thus
performed in parallel, with data owned by the different processes,
and the computed centers of mass are then gathered on the rank 0
process. This gathering is possible because the systems at stake are
small (< 10,000 atoms) and these data are thus small enough not to
disturb the simulation. Centers of mass are then sorted on the rank
0 process based on their positions, with increasing x-coordinate,
then y-coordinate, and finally z-coordinate. A (i,j,k) tuple is created
for each point to account for their (x,y,z) coordinates and to ease
the creation of the cells. The sorted centers of mass are finally used
to define the points of the mesh describing the MOF geometry.

The cells of the mesh are defined thanks to the periodic struc-
ture of the MOF (Figure 2). In the case of UiO-66(Zr) MOF, we can
create from each point of the vtkUnstructuredGrid, at most 4
octahedra in the xz-plan, 2 octahedra in the yz-plan and 8 tetra-
hedra to fill the gaps between the octahedra. The algorithm scans
each point in the mesh to check which cells can be constructed
based on the location of the point in the mesh and adds them in the
vtkUnstructuredGrid only if it does not already exist. The tetra-
hedra are defined as vtkTetra cells and the octahedra are defined
as two vtkPyramid with the same base because VTK does not eas-
ily handle octahedra. Once the cells are constructed for the entire
dataset, the position of the MOF cages is computed as the center
of mass of the different cages. For tetrahedral cages, the position
corresponds to the center of mass of the vertices of vtkTetra cells.
For octahedral cages, the position corresponds to the center of mass
of the vertices of the two vtkPyramid cells sharing the same base.
The positions of the different cages are finally stored in a global
variable so that they can be kept in memory from one iteration to
the other.

4.2.2 Development of the trigger. The second part of the Execute
function computes which cage is occupied by a CO2 molecule and
triggers data output only when a CO2 molecule has hopped from
one cage to another. In this study, we decided to track only one
CO2 molecule. This molecule is randomly chosen at the in situ
initialization and its molecule ID is kept as a global variable to be
accessible at each time step. Tracking one CO2 molecule simplifies
the development of the trigger without interfering with the physics
behind it. However, tracking several molecules would lead to better
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Figure 2: Creation of the 6 octahedra and 8 tetrahedra from
one point of the MOF mesh. We highlight the (i,j,k) indices
that form 2 octahedral cells (in blue) and 2 tetrahedral cells
(in orange).

statistics for the computation of the residency time and is thus left
for future work.

After each iteration, each MPI process searches whether the
tracked CO2 molecule belongs to its process. The process that owns
this CO2 molecule sends the position of the corresponding carbon
atom to the rank 0 process that is then in charge of computing
which cage’s center of mass is closer to this atom. In the case where
the corresponding cage ID is different than the one stored at the
previous iteration, a data output is triggered. This change of the
closest cage’s center of mass is what we call trigger criteria in the
following. The user can choose to export an xyz file (as proposed by
LAMMPS) for later post-processing, or towrite only the information
necessary to compute the residency time, namely a text file with
the iterations of hopping and the IDs of the visited cages along with
time.

In the case where a flexible MOF is considered i.e., the MOF
atoms are allowed to oscillate around their positions due to the
thermal excitation, computing the MOF geometry only at the first
iteration may cause errors in the detection of the cage containing
the CO2 molecule. To solve this issue, the extraction of the centers
of mass of the metal nodes can be done periodically during the
simulation, at a frequency set by the user. As the atoms are only
oscillating around their equilibrium positions, it is possible to skip
the re-generation of the cells of the mesh to save computing time.

5 RESULTS
5.1 Performance evaluation
The evaluation of this triggering system is performed by running
simulations with one CO2 molecule inside a rigid UiO-66(Zr) MOF
composed of 5,184 atoms on 5 million iterations. We run 3 simula-
tions in this evaluation: a traditional LAMMPS simulation without
any data output, a traditional LAMMPS simulation that writes an
xyz file after each iteration, and our LAMMPS driver with our
triggering system executed after each iteration that writes an xyz
file when the trigger is fired. The data output or in situ analysis
frequency is set to 1 in this study because there is no a priori knowl-
edge of the frequency of molecule hopping and we want to compute

Figure 3: Visualization of the trajectory of a CO2 molecule
(colored line) in a rigid UiO-66(Zr) MOF (no MOF atoms vi-
brations) for 5 million iterations.

the residency time the more accurately as possible. The simulations
are executed on 32 MPI processes of the Pangea 2 supercomputer
composed of Intel®Haswell nodes of 24 cores and 128GB of mem-
ory each, with the stable_3Mar2020 version of LAMMPS and the
version 3.2.1 of SENSEI.

First, our triggering system enables us to easily analyze the
trajectory of the CO2 molecule, and in particular to extract the
visited cages over time (Figure 3). We highlight that the diffusion
mechanisms occur by successive hoppings, where a CO2 molecule
is trapped for a while in a tetrahedral cage, then diffuses to the next
one by promptly crossing an octahedral cage. For this simulation,
the in situ algorithm triggers data output only 94 times over the 5
million iterations, showing that CO2 molecules get trapped for a
long time before hopping to another cage.

As a consequence, our driver outputs 130MB of data, while the
traditional LAMMPS simulation with output performed after each
iteration generates 1.4TB of data. This corresponds to a gain of 4
orders of magnitude in the size of the data saved between the two
approaches. Moreover, this also has an effect on the total execution
time. In Figure 4 we show the total execution time of the 3 simula-
tions, divided into the time to run the simulation, the time to write
files, and the time to compute the in situ analysis and evaluate the
trigger criteria. We thus show that our driver with in situ analysis
has an overhead of 32.85% compared to the traditional LAMMPS
simulation without output. This comes from the fact that the driver
introduces an overhead on the simulation execution time and the
in situ analysis adds the computation time needed to evaluate the
trigger criteria. On the other hand, the in situ analysis scenario is
14% faster than the traditional LAMMPS simulation with output
performed at each iteration. This gain is mostly attributed to the
smaller time needed to evaluate the trigger criteria than to write
data to the filesystem. Finally, we do not evaluate the gain in the
post-processing of the data itself because, to our knowledge, no
tool exists to compute, in a post-processing way, the residency time
from LAMMPS output. However, as LAMMPS appends all the data
in the same file, we safely assume that the time to read and analyze
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Figure 4: Comparison of the execution time for three simu-
lations: traditional LAMMPS without any data output, tradi-
tional LAMMPSwith data output after each iteration, and the
LAMMPS driver with our triggering system executed after
each iteration. For each simulation, we show the time taken
by LAMMPS itself, the time spent to evaluate the trigger if
applicable, and the time necessary to write data.

1.4TB of data is way higher than the time to process the 130MB
data exported by our driver.

5.2 Computation of the residency time for
various CO2 concentrations

We finally use our in situ analysis and triggering system to compute
the averaged CO2 residency time 𝜏 for several CO2 concentrations.
In this case, we run simulations with different numbers of CO2
molecules (1, 34, 75, 100, 151, and 345) in flexible UiO-66(Zr)MOF for
10 million iterations. For one simulation, 𝜏 is computed as the mean
residency time of a randomly chosen CO2 molecule. To account
for the trajectory of different CO2 molecules, each simulation is
executed 10 times.

Figure 5 shows the evolution of 𝜏 with the number of CO2
molecules in the simulation. For a given number of CO2 molecules,
we compute the mean and standard deviation of 𝜏 over the 10 sim-
ulation runs. We show that 𝜏 has a nonlinear behavior, decreasing
until a minimum for simulations with 75 CO2 molecules, followed
by an increasing behavior at larger CO2 concentrations. The molec-
ular mechanistics behind such a behavior can be highlight as follow.
At low molecular loading, corresponding to a few guest molecules
in the overall MOF pores, CO2 molecules strongly bond to the most
favorable energy sites of the MOF, reducing their mobility and
thus, increasing 𝜏 . When the guest loading increases and that all
favorable energy sites are occupied by one CO2, additional guests
molecules locate on less favorable sites increasing their mobility,
and in turn decreasing 𝜏 . At large loading (above 75 CO2), the avail-
able free pore volume in the MOF is low and the probability of
CO2 collisions increases with guests number. As a consequence
collisions decrease the overall CO2 mobility and an increase of 𝜏 .

Averaging 𝜏 is challenging but is important to provide input to
assess general diffusion theories from statistical physics or process
modeling. Our in situ analysis and triggering system enables us to
perform this study with a low overhead on the simulation execution
time andwith a small amount of data saved in the filesystem. Indeed,
by exporting only the information about residency time (as seen in

Figure 5: Residency times (𝜏) in UiO-66(Zr) MOF for various
CO2 concentrations. Each point corresponds to the mean
and standard deviation of 𝜏 over 10 simulations. Time is in
femtoseconds (10−15 s) where 1 iteration corresponds to 1 fs.

Section 4.2.2), we run the 60 simulations required to create Figure
5 with a memory footprint smaller than 100MB.

6 CONCLUSION AND FUTUREWORK
Carbon capture, including CO2 capture processes based on MOF
materials, is called to play an important role in the energy transition.
To understand and upscale the dynamics of CO2 molecules inside
MOF, the residency time of CO2 molecules is an important parame-
ter that can be used as an input in various theoretical models for
multiscale modeling. However, its accurate computation requires a
huge amount of data to be saved and calls for more efficient anal-
ysis methodologies. In this study, we propose an in situ analysis
to extract the geometry of a MOF to compute the CO2 kinetics in
MOF porosity and to trigger data output only when a CO2 mol-
ecule has hopped from one cage to another. We demonstrate the
benefits of this approach by implementing a LAMMPS C++ driver
instrumented with SENSEI in situ infrastructure and with an in situ
analysis developed in Python. We show that the triggering system
is up to 14% faster than the traditional approach without in situ,
with a memory footprint reduction by 4 orders of magnitude that
enables to perform studies of residency time computations of 60
simulations with a memory footprint smaller than 100MB.

As future work, we intend to compute the residency time for
various MOFs, such as ZIF-8 [10] and CALF-20(Zn) [21, 36], and for
various mixtures (different concentrations of CO2, blends with H2O,
N2, ...). We will also adapt our trigger algorithm to track several
CO2 molecules to compute better statistics of residency time. In
the next steps, we would like to test other in situ frameworks such
as Ascent or Catalyst through the SENSEI interface and to mix
triggers and bi-directional approaches. For example, we would like
to rewind the simulation when a molecule hops to another cage to
gain insights into hopping mechanisms in different MOFs. This way,
we could relay the role played by the local pore surface chemistry in
molecular diffusion that is crucial for designing the next generation
of MOFs materials that can efficiently capture CO2 at a reduced
cost.
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