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Monte Carlo study of magnetic resistivity in semiconducting MnTe
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We investigate in this paper properties of the spin resistivity in magnetic semiconducting MnTe of the NiAs
structure. MnTe is a crossroad semiconductor with a large band gap. It is an antiferromagnet with a Néel
temperature around 310 K. Due to this high Néel temperature, there are many applications using its magnetic
properties. The method we use here is Monte Carlo simulation, in which we take into account the interaction
between itinerant spins and lattice Mn spins. Our results show a very good agreement with experiments on the
shape of the spin resistivity near the Néel temperature.
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I. INTRODUCTION

Spin resistivity in materials has been the subject of intensive
studies both experimentally and theoretically for more than
five decades. Experiments have been performed to determine
the spin resistivity ρ in many magnetic materials, from metals
to semiconductors. The rapid development of the field is due
mainly to its many applications, in particular, in spintronics.
One interesting aspect of magnetic materials is the existence
of a magnetic phase transition from a magnetically ordered
phase to the paramagnetic (disordered) state. Depending on
the material, ρ can show a sharp peak at the magnetic
transition temperature TC ,1 or just a change of its slope, or
an inflexion point. The latter case gives rise to a peak of the
differential resistivity dρ/dT .2,3 Very recent experiments, such
as those performed on ferromagnetic SrRuO3 thin films,4 Ru-
doped induced ferromagnetic La0.4Ca0.6MnO3,5 antiferromag-
netic ε-(Mn1−xFex)3.25Ge,6 semiconducting Pr0.7Ca0.3MnO3

thin films,7 superconducting BaFe2As2 single crystals,8 and
La1−xSrxMnO3

9 compounds, show different forms of anomaly
of the magnetic resistivity at the magnetic phase transition
temperature.

The properties of the total resistivity stem from different
kinds of diffusion processes: scattering of the itinerant spins
by phonons, by lattice magnons, by impurities and defects, etc.
Each contribution has, in general, a different temperature de-
pendence. Let us summarize the most important contributions
at a low temperature (T ) in the expression

ρ(T ) = ρ0 + AT 2 + BT 5 + C ln
μ

T
, (1)

where A, B, and C are constants. The first term is T

independent; the second term, proportional to T 2, represents
the scattering of itinerant spins at low T by lattice spin
waves. Note that the resistivity caused by a Fermi liquid is
also proportional to T 2. The T 5 term corresponds to low-T
resistivity in metals. This is due to the scattering of itinerant
electrons by phonons. Note that at high T , metals show a
linear-T dependence. The ln term is the resistivity due to
the quantum Kondo effect at very low T . For the magnetic
contribution to the total resistivity, the T 2 term has been
obtained from the magnon scattering by Kasuya.10 However, at
high T , in particular, in the region of the phase transition, much
less is known. The general idea that the magnetic resistivity

is a function of the spin-spin correlation was introduced by
de Gennes and Friedel.11 According to this idea, the magnetic
resistivity should behave as the magnetic susceptibility, thus
it should diverge at TC . Fisher and Langer12 and Kataoka13

have suggested that the range of spin-spin correlation changes
the shape of ρ near the phase transition. The resistivity due to
magnetic impurities has been calculated by Zarand et al.14 as
a function of Anderson’s localization length. This parameter
expresses, in fact, the kind of correlation sphere induced
around each impurity. Their result that the resistivity peak
depends on this parameter is in agreement with the spin-spin
correlation idea. In our previous works15–17 we have studied
the spin current in ferromagnetic thin films by Monte Carlo
(MC) simulations. The behavior of the spin resistivity as a
function of T has been shown to be in agreement with the main
experimental features and theoretical investigations mentioned
above. We have introduced in these works the picture of
scattering of itinerant spins by magnetic defect clusters which
are known to be formed in the transition temperature region.
The size of each defect cluster expresses a kind of correlation
between spins.

In antiferromagnets much less is known because very few
theoretical investigations have been carried out. Haas18 has
shown that while in ferromagnets the resistivity ρ shows a
sharp peak at the magnetic transition of the lattice spins, in
antiferromagnets there is no such a peak. The alternate change
of sign of the spin-spin correlation with distance may have
something to do with the absence of a sharp peak.

In this paper, we are interested in antiferromagnetic MnTe,
a well-studied semiconductor with numerous applications due
to its high Néel temperature. The pure MnTe has either a
zinc-blende structure19 or a hexagonal NiAs one.20 We confine
ourselves to the case of the hexagonal structure. For this case,
the Néel temperature is TN = 310 K.20 Hexagonal MnTe is
a crossroad semiconductor with a big gap (1.27 eV) and
a room-temperature carrier concentration of n = 4.3 × 1017

cm−3.21,22 Without doping, MnTe is nondegenerate. In doped
cases,23–26 band tails created by doped impurities can more or
less cover the gap. But these systems, which are disordered
by doping, are not the purpose of our present study. So, in
the following we study only pure MnTe. The behavior of the
spin resistivity ρ in MnTe as a function of T has been shown
experimentally.27–31 In our previous paper,32 we carried out a
theoretical study with Boltzmann’s equation using numerical
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data for a cluster distribution obtained by MC simulations.
We could only compare our result with old experimental data
available at that time below the transition temperature.27 After
the publication of our paper, new experimental results of He
et al.31 become available for the whole range of temperature
for pure MnTe. This motivated the present work.

In this paper, we use the same model as in our previous
work32 for MnTe. But unlike that previous paper, which used
the approximate Boltzmann’s equation, we use here direct MC
simulations without recourse to approximations. In addition,
we take into account the lattice magnetic relaxation time in the
calculation of the spin resistivity. The tuning of the relaxation
time allows an excellent agreement with the experimental
resistivity of MnTe as shown below.

In Sec. II, we present our model and describe our MC
method. Results are reported and compared with experimental
resistivity of MnTe in Sec. III. Concluding remarks are given
in Sec. IV.

II. MODEL AND METHOD

A. Model

The hexagonal NiAs-type structure of MnTe is shown
in Fig. 1.20 It is composed of ferromagnetic xy hexagonal
planes antiferromagnetically stacked in the c direction. The
nearest-neighbor (NN) distance in the c direction is c/2 �
3.36 Å shorter than the in-plane NN distance, which is
a = 4.158 Å. Neutron scattering experiments show that the
main exchange interactions between Mn spins in MnTe
are (i) interaction between NNs along the c axis with the
value J1/kB = −21.5 ± 0.3 K, (ii) ferromagnetic exchange
J2/kB ≈ 0.67 ± 0.05 between in-plane neighboring Mn (they
are next NN by distance), and (iii) third NN antiferromagnetic
interaction J3/kB � −2.87 ± 0.04 K.

The interactions J1, J2, and J3 are indicated in Fig. 1. In
addition, the spins are lying in the xy planes perpendicular
to the c direction, with a small in-plane easy-axis anisotropy
D.20 We note that the values of the exchange integrals given
above have been deduced from experimental data by fitting
with a formula obtained from a free spin-wave theory.20

Other fittings with mean-field theories give slightly different
values.21 Therefore, care should be taken when using values
deduced from experimental data, keeping in mind that they

FIG. 1. Structure of MnTe of the NiAs type. Antiparallel spins
are shown by black and white circles. The nearest-neighbor (NN)
interaction is labeled J1; the next NN interaction, J2; and the third
NN interaction, J3.

depend on the models used and approximations involved in
the fitting.

The lattice Hamiltonian is given by

H = −J1

∑

(i,j )

Si .Sj − J2

∑

(i,m)

Si .Sm − J3

∑

(i,k)

Si .Sk

− D
∑

i

(
Sx

i

)2
, (2)

where Si is the Heisenberg spin at lattice site i,
∑

(i,j ) is made
over the NN spin pairs Si and Sj with interaction J1, and∑

(i,m) and
∑

(i,k) are made over the next-NN and third-NN
pairs with interactions J2 and J3, respectively. D > 0 is an
anisotropy constant which favors the in-plane x easy-axis spin
configuration. The Mn spin is experimentally known to be of
the Heisenberg model with magnitude S = 5/2.20

The interaction between an itinerant spin and surrounding
Mn spins in semiconducting MnTe is written as

Hi = −
∑

n

J (�r − �Rn)s · Sn, (3)

where J (�r − �Rn) > 0 is a ferromagnetic exchange interaction
between the itinerant spin s at �r and the Mn spin Sn at lattice
site �Rn. The sum on lattice spins Sn is limited at some cutoff
distance as discussed later. We suppose that J (�r − �Rn) is
weak enough to be considered a perturbation to the lattice
Hamiltonian:

J (�r − �Rn) = I0 exp[−α(�r − �Rn)], (4)

where I0 and α are constants. We choose α = 1 for conve-
nience. The choice of I0 should be made so that the interaction
Hi yields an energy much lower than the lattice energy due
to H (see discussion of the choice of variables in Refs. 33
and 34).

Since in MnTe the carrier concentration is n = 4.3 × 1017

cm−3, low with respect to the concentration of its surrounding
lattice spins, �1022 cm−3, we do not take into account the
interaction between itinerant spins. The contribution of that
interaction to the energy of an itinerant spin is negligible.

B. Method

We perform MC simulations on a sample of dimension
L × L × L, where L is the number of MnTe cells in the x, y,
and z directions. Note that each cell contains two Mn atoms
and two Te atoms (see Fig. 1). Periodic boundary conditions
are applied in all directions. The itinerant electrons move in the
system under an electric field �ε applied along the x direction,

HE = −e�ε.��, (5)

where −e is the charge of the electron and �� the displacement
vector of the electron. Each electron spin s of magnitude 1/2
interacts with neighboring lattice Mn spins within a sphere of
radius D1 according to Eq. (3). Note that the periodic boundary
conditions are applied to the lattice so that electrons near (and
at) the system boundaries “see” the same environment as if
they are deep inside the system. For that purpose only the
lattice is “translated” in all directions by the periodic boundary
conditions, while electrons that leave the system at one end
will re-enter the system at the opposite end so that the total
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number does not change. They are never outside the system.
The electric field acts on them inside the system. We take in
the following the Ising model for electron spin. In doing so,
we neglect quantum effects, which are, of course, important at
very low temperatures but not in the transition region at room
temperature, where we focus our attention.

The MC technique we use for the transport is a multistep
averaging which has been shown to reduce statistical fluctua-
tions efficiently.33,34 The reader is referred to our early works
for a detailed description of our method as well as the effects of
changing physical parameters such as D1 in antiferromagnets.

We briefly summarize our method here. The procedure
of our simulation consists in equilibrating first the lattice
at a given temperature T without itinerant electrons. When
equilibrium is reached, we randomly add N0 polarized itinerant
spins into the lattice. Each itinerant electron interacts with
lattice spins in a sphere of radius D1 centered at its position.
We next equilibrate the itinerant spins using the following
updating: we calculate the energy Eold of an itinerant electron
taking into account the spin-lattice interaction described above.
Then we perform a trial move of length � taken in an arbitrary
direction with random modulus in the interval [R1,R2], where
R1 = 0 and R2 = a, a being the lattice constant. Note that the
move is rejected if the electron falls in a sphere of radius r0

centered at a lattice spin or at another itinerant electron. This
excluded space emulates the Pauli exclusion. We calculate the
new energy Enew and use the Metropolis algorithm to accept or
reject the electron displacement. We choose another itinerant
electron and begin the procedure again. When all itinerant
electrons are considered, we say that we have made an MC
sweeping, or one MC step per spin We have to repeat a large
number of MC steps per spin to reach a stationary transport
regime. We then perform the averaging to determine physical
properties such as magnetic resistivity, electron velocity, and
energy as functions of temperature.

We emphasize here that in order to have sufficient statistical
averages for microscopic states of both the lattice spins and
the itinerant spins, we use the following procedure: after
averaging the resistivity over N1 steps for “each” lattice spin
configuration, we again thermalize the lattice with N2 steps in
order to take another disconnected lattice configuration. Then
we take back the averaging of the resistivity for N1 steps for
the new lattice configuration. We repeat the cycle, N1 + N2,
N3 times, usually several hundred thousand times. The total
MC steps for averaging is about 4 × 105 steps per spin at each
temperature in our simulations. This procedure greatly reduces
the thermal fluctuations observed in our previous work.16,17

Of course, the larger N1 and N3 are, the better the statistics
becomes. The question is, What is the correct value of N1

for averaging with each lattice spin configuration at a given
T ? This question is important because it is related to the
relaxation time τL of the lattice spins compared to that of
the itinerant spins, τI . The two extreme cases are as follows.
(i) τL � τI ; one should take N1 = 1, namely, the lattice spin
configuration should change with each move of itinerant spins.
(ii) τL � τI ; in this case, itinerant spins can travel in the
same lattice configuration many times during the averaging.
In a word, this technique consists in changing the lattice spin
configuration as often as the temperature-dependent relaxation
time allows. The relaxation time of the lattice spin system is

expressed as35

τL = Q

|1 − T/TN |zν , (6)

where Q is a constant, ν the correlation critical exponent, and
z the dynamic exponent. From this expression, we see that as
T tends to TN , τL diverges. This phenomenon is known as the
critical slowing-down. For the Heisenberg model, zν = 1.38
(ν = 0.704 and z = 1.97).36 We have previously shown that
τL strongly affects the shape of ρ.37 However, as shown in
the following, the choice of Q is rather physically natural:
we know that far in the paramagnetic phase, the lattice spins
are strongly disordered. They fluctuate rapidly in the thermal
bath. It is reasonable therefore to assume that τL = 1 (smallest
value in MC time) at T = 2TN . With this assumption, we
have Q = 1 as seen from Eq. (6). We use this choice in the
following.

III. RESULTS

The resistivity ρ(T ) is calculated by counting the number of
itinerant spins n(T ) that cross a unit surface perpendicular to
the electric field, per MC time unit. In order to take spatial
averages, we put such surfaces at three positions at equal
distance along the sample length in the x direction. The
resistivity is given by

ρ(T )−1 = n(T )e2τI

m
, (7)

where m is the electron mass.
We have calculated the spin resistivity of hexagonal MnTe

using the exchange integrals taken from Ref. 20. These
values are given above. As stated before, the values of the
exchange interactions deduced from experimental data depend
on the model Hamiltonian, in particular, on the spin model
and the approximations. We emphasize here, again, that in
semiconducting MnTe we neglect the interaction between
itinerant electrons due to their low concentration. They interact
only with the lattice spins. In the calculation of the resistivity
ρ(T ), we count, among N0 itinerant spins, only the number
of electrons which cross a unit surface perpendicular to the
electric field, per unit time. This number, n(T ), depends on the
temperature. Using n(T ), one obtains ρ(T ) by Eq. (7).

Note that in semiconductors, the carrier concentra-
tion depends on T . In a simple theoretical model for a
semiconductor, we have the expression n(T ) = 2[mekBT /

2πh̄2]3/2 exp[−(Eg − EF )/kBT ], where me is the electron
effective mass in the conduction band, Eg the energy gap, and
EF the Fermi level.38 But this theoretical formula is from a first
approximation. It does not correspond to real semiconductors,
where, unfortunately, no correct formulas are available. In our
model, the temperature dependence of n(T ) comes from the
simulation; it is not introduced by hand. As stated above, n(T )
is counted in the simulation at each T . So, our method of direct
computation of n(T ) without approximation is very helpful for
comparison with experiments.

The result for the spin resistivity is shown in Fig. 2.
Our result reproduces the experimental data n(T ) � 4.3 ×
1017 cm−3 at room temperature. Using the experimental
data in Fig. 2, the reader can obtain n(T ) at any other
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FIG. 2. Spin resistivity ρ versus temperature T . Filled circles are
from Monte Carlo simulation; open circles are experimental data
taken from He et al.31 Parameters used in the simulation are J1 =
−21.5 K, J2 = 2.55 K, J3 = −9 K, I0 = 2 K, D = 0.12 K, D1 =
a = 4.158 Å, E = 2 × 105 V/m, and L = 30.

temperature. Furthermore, with the value of ρ, we obtain
a relaxation time of itinerant spin equal to τI � 0.1 ps,
and a mean free path equal to l̄ � 20 Å, at the critical
temperature.

Let us make some comments on the result shown in Fig. 2.
(1) With J3 slightly larger in magnitude than the value

deduced from experiments, we find TN = 310 K.
(2) ρ shows a pronounced peak, in excellent agreement with

experiments.
(3) Note that the shape of the peak depends on Q. The value

we used to obtain that agreement is Q = 1. A discussion of
this value is given folllowing Eq. (6)

(4) In the temperature regions below T < 140 K and
above TN , the MC result is in excellent agreement with
experiment, unlike in our previous work32 using Boltzmann’s
equation.

(5) In the region 140 K < T < TN the MC result of ρ is
slightly smaller than the experimental data. In the search for an
explanation, we see that the magnetization obtained by the MC
simulation, though in good agreement with experiments at low
T and yielding the precise value of TN , is slightly smaller than
the experimental one in the intermediate temperature region.
This is shown in Fig. 3. The magnetization deficit may be
due to the fact that the magnetic anisotropy was too small, at
D = 0.12 K, taken from Ref. 20; it is not strong enough to
enhance the magnetization.

100 150 200 250 300 350 400 450
0.0

0.5

1.0

1.5
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2.5

T (K)

M ( μB)

FIG. 3. Magnetization M (in units of μB ) versus temperature
T (in units of K). Filled circles are the results of Monte Carlo
simulation; open circles are experimental data taken from Efrem
D’Sa et al.30 Parameters are the same as those given in the caption to
Fig. 2.

(6) MnTe is a nondegenerate semiconductor with a large
gap. In such a case, the Fermi level is in the gap, the
conduction electron concentration is low (due to no doping),
the Maxwell-Boltzmann distribution can be used for electrons
in the conduction band instead of the Fermi distribution. As
a consequence, quantum effects are not strong or are even
absent at moderate temperatures. This may explain the good
agreement of our result using the classical spin model for
T > 50 K.

IV. CONCLUSION

We have shown in this paper the MC results of the spin re-
sistivity ρ as a function of temperature in MnTe. We have taken
into account the main interaction which governs the resistivity
behavior, namely, the interaction between itinerant spins and
lattice Mn spins. Our result is in agreement with experiments: it
reproduces the correct Néel temperature as well as the shape of
the peak at the phase transition. Note that the theory of Haas18

predicts the absence of a peak in ρ in the temperature region of
the phase transition for antiferromagnetic MnTe. We, finally,
emphasize that our excellent agreement was possible because,
most importantly, we have correctly taken into account the
temperature dependence of the lattice spin relaxation time in
the simulation.37
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