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In this paper we study the spin transport in frustrated antiferromagnetic FCC films by Monte Carlo simulation.
In the case of the Ising spin model, we show that the spin resistivity versus temperature exhibits a discontinuity
at the phase transition temperature: an upward jump or a downward fall, depending on how many parallel and
antiparallel localized spins interacting with a given itinerant spin. The surface effects as well as the difference of
two degenerate states on the resistivity are analyzed. A comparison with nonfrustrated antiferromagnets is shown
to highlight the frustration effect. We also show and discuss the results of the Heisenberg spin model on the same
lattice.
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I. INTRODUCTION

The resistivity in magnetically ordered materials has
been studied experimentally and theoretically during the last
50 years. Unlike the resistivity in nonmagnetic systems, which
is due mainly to the scattering of conduction electrons by
phonons, the resistivity in magnetic materials depends on
the magnetic ordering. It has been theoretically shown that
in ferromagnets the resistivity is due to the spin-spin corre-
lation by several workers,1–4 using various approximations
such as mean-field theories and Boltzmann’s equation. The
main difference of these treatments resides on the way the
correlation length is taken into account: long-range correlation
gives rise to a divergence of the magnetic resistivity ρ at
the transition temperature TC , while short-range correlation
causes a rounded peak. Experimental data show that ρ has
several forms depending on the materials: ρ shows a peak,
a rounded shoulder, or just a change of slope at TC . In the
last case, it is dρ/dT which shows a peak.5–7 In recent
experiments performed on different kinds of magnetic pure
or doped materials ranging from insulators, semiconductors
to superconductors, the form of ρ is very different.8–15 These
theories and experiments suggest that the shape of ρ depends
on the different magnetic interactions in the system, and on
the local magnetic ordering through which the itinerant spins
evolve. Recently, the study of spin resistivity has attracted
again much attention due to numerous applications since the
discovery of the so-called giant magnetoresistance.16–22

Let us recall first some results in the ferromagnetic case.
At very low temperatures T where spin-wave scattering is
dominant, the resistivity has been studied in detail showing a
T 2 behavior.23,24 Near the transition, we have shown in recent
papers25,26 that the pronounced peak at the Curie temperature
TC of the magnetic resistivity of ferromagnets can be explained
by the scattering of itinerant spins by defect clusters formed in
the lattice around TC . This picture has an advantage: It can be
checked easily by calculating the numbers and the sizes of the
clusters numerically during the simulation using the Hoshen-
Kopelmann’s algorithm.27 Note that clusters of down spins can
be considered as magnetic impurities embedded in a up-spin
sea which have been theoretically studied by Zarand et al.28

where they found also a pronounced peak of the resistivity.
Of course, the cluster sizes reflect the correlation length used
in early theories.1,3,4 It is not a surprise that our results for
ferromagnets were in agreement with all these theories.

The case of antiferromagnets has not been well studied.
There were only a few works which mentioned briefly some
behaviors. Let us cite the work by Haas where he stated
that in antiferromagnets there is no peak in ρ using the
spin-spin correlation in the Boltzmann’s equation.3 Our recent
works29,30 on the simple cubic and the body-centered cubic
Ising antiferromagnets show that there is indeed no peak in
ρ: ρ varies with T in a manner similar to that of the internal
energy versus T . As a consequence, the differential resistivity
dρ/dT shows a peak at the transition temperature TC just like
the specific heat. Interestingly enough, this behavior has been
experimentally observed in MnSi and related compounds.31,32

We will show below some results of these nonfrustrated
antiferromagnets for comparison with the frustrated case
studied in this paper.

Our purpose is to show in this paper one of the remarkable
cases: the face-centered cubic (fcc) antiferromagnet (AF). This
system is known to be fully frustrated with a strong first-order
transition in the Ising case.33,34 The spin resistivity is known
to be very sensitive to the nature of the ordering of the media
through which the itinerant spins move: local disordering
(for instance, disordering near film surfaces, around magnetic
impurities), magnetic instability, and so on. The fcc AF is thus
a very good candidate where exotic behaviors are expected for
the spin resistivity. This will indeed be seen in this work. By
using Monte Carlo (MC) simulation, we show that frustration
and interaction range between itinerant spins and lattice spins
play a crucial role on the spectacular discontinuity of the
magnetic resistivity at TC . In the case of Heisenberg spin, the
transition is also of first order, though weaker, in the bulk.35

We study also this model in this work to outline the effect of
spin continuous degrees of freedom on the resistivity.

The paper is organized as follows. Section II is devoted to
the description of the model and the calculation method. In
Sec. III, we show MC results on the temperature dependence
of the magnetic resistivity in the Ising spin model. Section IV
is devoted to results of the Heisenberg case. A discussion and
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explanation are given with regard to the transport mechanism.
Concluding remarks are given in Sec. IV.

II. MODEL AND SIMULATION PROCEDURE

A. Model

We consider a thin film of fcc lattice structure where
each lattice site is occupied by an Ising spin whose val-
ues are ±1. The Heisenberg spin model is considered
in Sec. IV. Interaction between the lattice spins is lim-
ited to nearest-neighbor (NN) pairs with the following
Hamiltonian:

Hl = −
∑

(i,j )

Ji,j
�Si · �Sj , (1)

where �Si is an Ising spin and Ji,j the exchange integral between
the NN spin pair �Si and �Sj . Hereafter we take Ji,j = Js for
surface spins and Ji,j = J for other NN spin pairs. We consider
here the antiferromagnetic interaction Js,J < 0 for the rest of
this paper. The system size is Nx × Ny × Nz where Nx is the
number of fcc cells in the x direction and so on. Periodic
boundary conditions (PBC) are used in the x and y directions
while the surfaces perpendicular to the z axis are free. The film
thickness is Nz.

The fcc AF is a fully frustrated system which is composed
of tetrahedra each of which has four equilateral triangles. We
know that it is impossible to fully satisfy simultaneously the
three antiferromagnetic bond interactions on each triangle.
As a consequence, the bulk lattice has an infinite ground-
state degeneracy.33 In the case of a thin film, the surface spin
configuration depends on Js as shown in Fig. 1.34

For |Js | < 0.5|J |, the ground state is composed of fer-
romagnetic xy planes antiferromagnetically stacked in the
z direction as shown in the upper figure of Fig. 1. For |Js | >

0.5|J |, the ground state is two-fold degeneracy as shown in the
middle and lower figures of Fig. 1. The difference of these two
configurations is that the middle figure is an alternate stacking

II

I

III

x

z y

FIG. 1. Ground-state spin configuration of the fcc cell at the film
surface (basal xy plane). The horizontal (vertical) axis is the x (z)
axis. (top) Ground state when |Js | < 0.5|J |. (middle and bottom)
First and second ground states when |Js | > 0.5|J |.

of up- and down-spin planes in the y direction while the lower
figure is an alternate stacking of up- and down-spin planes in
the x direction. These degenerate states are not equivalent in
the spin transport in the x direction as seen below: in the first
degenerate state, the itinerant spins move in the x direction
between an up-spin plane and a down-spin plane, while in the
second degenerate state the itinerant spins meet successively
an up-spin plane and a down-spin plane perpendicular to their
trajectories. We will present our results for these two cases
separately.

B. Multistep averaging

The procedure of our simulation can be split into two steps.
The first step consists in equilibrating the lattice at a given
temperature T without itinerant electrons. When equilibrium
is reached, we study thermodynamic properties of the film so as
to determine its Neel temperature by examining quantities like
internal energy, specific heat, susceptibility, and magnetization
as functions of T .36,37

In the second step, we randomly add N0 polarized itinerant
spins into the thermalized fcc lattice. In the structure, each
itinerant electron interacts with lattice spins in a sphere of
radius D1 centered on its position, and with other itinerant
electrons in a sphere of radius D2. We define these interactions
as follows

Hr = −
∑

i,j

Ii,j �σi · �Sj , (2)

where σi is the Ising spin of the itinerant electron and Ii,j

denotes the interaction that depends on the distance between
an electron i and the spin �Sj at the lattice site j . We use the
following interaction expression:

Ii,j = I0e
−αrij with rij = |�ri − �rj |, (3)

where I0 and α are constants which will be chosen in Sec. II C.
In the same way, the interaction between itinerant electrons is
defined by

Hm = −
∑

i,j

Ki,j �σi · �σj , (4)

Ki,j = K0e
−βrij , (5)

with σi the spin of the itinerant electron and Ki,j the interaction
that depends on the distance between electrons i and j . The
choice of the constants K0 and β is discussed in Sec. II C.

The dynamics of itinerant electrons is ensured by an electric
field applied along the x axis. Electrons enter the system at the
first end, travel in the x direction, and leave the system at the
second end. The PBC on the xy planes ensure that the electrons
who leave the system at the second end are to be reinserted at
the first end. For the z direction, we use the mirror reflection
at the two surfaces. These boundary conditions are used to
conserve the average density of itinerant electrons. One has

HE = −e�ε · ��, (6)

where e is the charge of the electron, �ε the applied electrical
field, and �� the displacement vector of an electron.

Since the interaction between itinerant electron spins is
attractive, we need to add a chemical potential to avoid a
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possible collapse of electrons into some points in the crystal
and to ensure a homogeneous distribution of electrons during
the simulation. The chemical potential term is given by

Hc = D �∇rn(�r), (7)

where n(�r) is the concentration of itinerant spins in the sphere
of theD2 radius, centered at �r . D is a constant parameter,
appropriately chosen.

The procedure of spin dynamics can be described as fol-
lows. After injecting N0 itinerant electrons in the equilibrated
antiferromagnetic fcc lattice, we calculate the energy Eold

of an itinerant electron taking into account all interactions
described above. Then we perform a trial move of length �

taken in an arbitrary direction with random modulus in the
interval [R1,R2] where R1 = 0 and R2 = a/

√
2 (NN distance),

a being the lattice constant. Note that the move is rejected
if the electron falls in a sphere of radius r0 centered at a
lattice spin or at another itinerant electron. That excluded
space emulates the Pauli exclusion. We calculate the new
energy Enew and use the Metropolis algorithm to accept or
reject the electron displacement. We choose another itinerant
electron and begin again this procedure. When all itinerant
electrons are considered, we say that we have made a MC
sweeping, or one MC step. We have to repeat a large number
of MC steps to reach a stationary transport regime. When
the stationary regime is reached, we perform the averaging
to determine physical properties such as magnetic resistivity,
electron velocity, energy, and so on as functions of temperature.

We emphasize here that to have sufficient statistical
averages on microscopic states of both the lattice spins and
the itinerant spins, we use the following procedure: After
averaging the resistivity over N1 MC steps, we thermalize
again the lattice with N2 steps, then equilibrate the itinerant
spins with N3 steps before taking back the averaging of the
resistivity during N1 steps. We repeat this cycle (N1 + N2 +
N3) for N4 times (typically N4 = 100). The total of MC steps
is therefore equal to N4 × (N1 + N2 + N3). As will be seen
below, this procedure reduces strongly thermal fluctuations
observed in our previous work.25 The transport averaging is
made for N2 = 100 configurations of lattice spins. At each
configuration, we adjust N1 so that the spin resistivity is
calculated during 1000 lattice sweepings per itinerant spin
(each electron passes through the system 1000 times). N2

depends on T : it can be several thousands near TC . In all, at
each T the initial equilibration time for lattice spins lies around
105–106 steps per spin and statistical averages are made with
about 4 × 105 steps per spin (N4 × N1).

We define resistivity ρ as

ρ = 1

ne

, (8)

where ne is the number of itinerant electrons crossing a unit
slice perpendicular to the x direction per unit of time.

In this paper we use the lattice size Nx = Ny = 20 and
Nz = 8.

For studying the spin transport, we consider N0 = (Nx ×
Ny × Nz)/2 itinerant spins (one electron per two fcc unit cells).
Except as otherwise stated, we choose interactions I0 = K0 =
0.5, D1 ∈ [0.6a; 2a], D2 = a, D = 0.35, ε = 1, N0 = 1600,

FIG. 2. Collapse phase diagram in the space (K0,D). The black
zone is the collapse region. D1 = D2 = a. See text for comments.

and r0 = 0.05a. A discussion on the effect of a variation of
each of these parameters will be given in Sec. II C.

Note, however, that due to the form of the interaction given
by Eq. (5), the itinerant spins have a tendency to form compact
clusters to gain energy. This tendency is neutralized more or
less by the concentration gradient term, or chemical potential,
given by Eq. (7). The value of D has to be chosen so as to
avoid a collapse of itinerant spins. We show in Fig. 2 the phase
diagram in the space (K0,D). The limit depends, of course, on
the values of D1 and D2.

C. Choice of different parameters

We will show below results obtained for typical values of
parameters. The choice of the parameters has been made after
numerous test runs. Let us describe the principal requirements
for the choice.

(i) We choose the interaction between lattice spins as unity
(i.e., |J | = 1).

(ii) We choose the interaction between an itinerant and its
surrounding lattice spins so as its energy Ei in the low T region
is the same order of magnitude with that between lattice spins.
To simplify, we take α = 1.

(iii) Interaction between itinerant spins is chosen so that this
contribution to the itinerant spin energy is smaller than Ei to
highlight the effect of lattice ordering on the spin current. To
simplify, we take β = 1.

(iv) The choice of D is made in such a way as to avoid the
formation of clusters of itinerant spins (collapse) due to their
attractive interaction [Eq. (5)] as shown above.

(v) The electric field is chosen to be not so strong to avoid
its dominant effect that would mask the effects of thermal
fluctuations and of the magnetic ordering.

(vi) The density of the itinerant spins is chosen in a way that
the contribution of interactions between themselves is neither
so weak nor so strong with respect to Ei .

Within these requirements, a variation of each parameter
does not change qualitatively the results shown below. As will
be seen, only the variation of D1 does change drastically the
results. That is the reason why we will study in detail the
effect of this parameter. For larger densities of itinerant spins,
the resistivity is larger than expected because of the additional
scattering process between itinerant spins.

In view of the above requirements, we take for the
simulations: J = −1 (AF interaction), I0 = K0 = 0.5|J |,
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D1 ∈ [0.6a; 2a], D2 = a, D = 0.35, ε = 1, N0 = 1600, and
r0 = 0.05a, a being the fcc lattice constant. Within these
choices, the results in the following will be presented
in the following units: The spin energy is in the unit of |J |,
the temperature is in the unit of |J |/kB , and the distance is in
the unit of a.

Finally, we keep α constant when varying D1. This is
because varying D1 means we include or do not include some
far neighbors. If the interaction of these far neighbors follows
the same Eq. (3) as the one between shorter neighbors then it
is known theoretically that no new interesting physical phe-
nomenon can occur except the modification of nonuniversal
values such as the critical temperature. This case corresponds
to ferromagnetic interaction where further neighbors do not
cause an interesting effect. On the other hand, when further
neighbor interaction is in competition with the interaction of
nearer neighbors, the system can be frustrated, then physical
properties can radically vary. This is the case studied here.
Now varying α to keep the the interaction constant will not
change the observed physical behaviors. What will change is
the relative value of the energy and therefore the value of the
transition temperature, but not the qualitative behavior of the
system.

III. RESULTS FOR THE ISING CASE

We show in Fig. 3 the staggered magnetization of the lattice
as a function of T . As seen here the transition is of first order
with a discontinuity at TC � 1.79. Note that the Ising AF fcc
thin film shows a first-order transition down to a thickness of
about four atomic layers.34

A. Resistivity in the first degenerate state

We consider the first degenerate configuration shown in the
middle figure of Fig. 1 with Js = J = −1. To understand the
behavior of the spin resistivity which will be shown below,
let us first show how various physical quantities at a given
temperature depends on D1.

In the ferromagnetic state, increasing (decreasing) D1

results in an increase (decrease) of the number of “parallel”
lattice spins which interact with the itinerant spin. This means
that increasing (decreasing) D1 results in a decrease (increase)

FIG. 3. Staggered magnetization of antiferromagnetic fcc thin
film of thickness Nz = 8 versus T . The transition temperature TC �
1.79.

FIG. 4. Different physical quantities versus D1 in units of the
lattice constant a in the case of the first degenerate configuration.
From top to bottom: Resistivity, velocity on the x axis, difference of
up- and down-spin numbers, energy of an itinerant spin. In each plot
circles corresponds to T = 1.65 and diamonds to T = 2. Nz = 8,
N0 = 1600, Js = J = −1.0, and D = 0.35.

of the energy of the itinerant spin. In antiferromagnets, the
situation is different: Changing D1 will result in an oscillatory
change of the difference of the numbers of parallel and
antiparallel spins in the sphere of radius D1, namely �N↑↓ =
N↑ − N↓. This is because of antiferromagnetic ordering.

We show in Fig. 4 the resistivity, the spin velocity in the
x direction, �N↑↓, and the energy of an itinerant spin at T =
1.65 below the transition and at T = 2 in the paramagnetic
lattice, for different values of D1. The following remarks are
in order.

(1) As said above, at low T , �N↑↓ oscillates with varying
D1. When �N↑↓ is maximum (i.e., the number of up spins is
large, the energy of the itinerant spin is low). As a consequence,
the itinerant spin will not move easily under the electric field,
its velocity is therefore slowed down, making the resistivity to
increase.

(2) At high T , the lattice spins are disordered, there are
no more shells alternately of up and down spins around an
itinerant spin. So the oscillatory behavior of �N↑↓ is reduced
as seen in Fig. 4 at T = 2.

In Fig. 5 we show the spin resistivity ρ versus T for
two typical values of D1. In all cases resistivity ρ is small
for low T then increases with increasing T . At Tc, it

FIG. 5. Resistivity of thin film of size Nx = Ny = 20 and Nz = 8
for N0 = 1600 itinerant spins versus T for D1 = a (black circles) and
D1 = 1.25a (white circles), a being the lattice constant. Case of the
first degenerate state Js = J = −1.0, I0 = K0 = 0.5, D = 0.35.
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undergoes a discontinuity upward jump. After the transition,
the resistivity decreases slowly to the same value for all D1

in the paramagnetic phase. We explain the behavior of ρ at
different temperature regions.

(1) When T → 0, the resistivity slightly increases because
itinerant spins search to minimize energy by occupying
low-energy positions in the periodic lattice. Since the ther-
mal energy and electric fields are not strong enough to
make them move, the itinerant spins are somewhat frozen
in some almost periodic positions, namely a pseudocrystal-
lization. We have studied the spatial distribution of itinerant
spins. The results show indeed a radial distribution with
peaks up to rather long-range positions at low T , namely
up to fourth nearest neighbors. Note that the increase of ρ

when T → 0 has been observed in many experiments among
which we can mention: Fig. 10 of the paper by Chandra
et al. on CdMnTe (Ref. 38), Fig. 2 of the paper by Du
et al. for MnFeGe (Ref. 13), Fig. 6(a) of the paper by
McGuire et al. on AF superconductors LaFeAsO (Ref. 15),
Fig. 2 of the paper by Lu et al. on AF LaCaMnO Ref. 12),
and Fig. 7 of the paper by Santos et al. on AF LaSrMnO
(Ref. 10). Note, however, that most of these experiments
concern doped semiconductors. In semiconductors, the carrier
concentration increases with increasing T . Our model has
a number of itinerant spins that are independent of T in
each simulation. So we cannot compare quantitatively our
results with experiments on semiconductors, in particular,
these latter are often magnetically disordered systems. But
in each simulation, we can take another concentration (see
our previous paper25) The results show that the resistivity is
somewhat modified, but keeps the same feature, except the fact
that the stronger the concentration is the smaller the peak at
TC becomes. Therefore, we believe that some generic effects
independent of carrier concentration will remain. Note also
that our results of the resistivity at low T depends on our model.
This behavior (ρ increases with decreasing T ) is observed
only when we introduce a rather strong interaction between
itinerant spins (variable K0). Reducing K0 will suppress this
tendency. On the hypothesis of frozen electrons, there is a
reference on the charge-ordering at low T in Pr0.5Ca0.5MnO3

(Ref. 14) due to some strain interaction. A magnetic field
can make this ordering melted giving rise to a depressed
resistivity. Though our model does not correspond to this
material, the fundamental concept is similar. For the system
Pr0.5Ca0.5MnO3, which shows the commensurate charge order,
the “melting” fields at low temperatures are high, on the order
of 25 Tesla.14 We mention here that low-T behaviors can be
also studied by alternative Kubo and Landauer methods as
shown by Ref. 22. When T increases, thermal energy unfreezes
itinerant electrons, the system is progressively unfrozen and
the resistivity slightly decreases and then increases up to TC .

(2) At TC , ρ exhibits a discontinuity due to the discontinuity
of the lattice magnetization to which the itinerant spins are
coupled. For the first degenerate configuration (Fig. 1, middle)
ρ makes an upward jump.

(3) After TC , the lattice is paramagnetic: There is no
significant effect of D1 as discussed earlier.

We show now the effect of the magnetic field in Fig. 6. We
observe here that the peak height increases with increasing
B, contrary to the case of ferromagnets where the peak

FIG. 6. Resistivity versus T for two values of magnetic field B

with D1 = a, Nz = 8, N0 = 1600, and Js = J = −1.0. Black circles
correspond to B = 0.75 and white circles to B = 0.25.

diminishes with increasing B (Refs. 25 and 29). The difference
can be explained by the fact that in antiferromagnets the
magnetic field causes a transition at some T by returning
antiparallel spins and thus enhances critical fluctuations while
in ferromagnets the magnetic field suppresses fluctuations and
forbids a phase transition. Since the peak height is proportional
to critical fluctuations, it is not surprising that the peak
increases with increasing B in antiferromagnets. Note that TC

diminishes with increasing B as expected in antiferromagnets.

B. Resistivity in the second degenerate state

Let us consider the second degenerate configuration where
the ferromagnetic up- and down-spin planes are perpendicular
to the spin current in the x direction (Fig. 1, bottom). We
show first in Fig. 7 the resistivity, the electron velocity,
�N↑↓ = N↑ − N↓, and the energy of an itinerant spin at two
temperatures, below and above TC , as functions of D1. One
observes here a crossover of low-T and high-T resistivities
at different positions of D1. So, depending on D1, low-T
resistivity can be smaller or larger than that of high T . At
TC , ρ can jump upward or downward depending on the value
of D1. This is what we see in Fig. 8. Note that, as in the case
of the first degenerate configuration, a minimum energy of
itinerant spin corresponds to a minimum of the velocity and a

FIG. 7. Resistivity, spin velocity, �N↑↓, and energy of itinerant
spin versus D1 (in units of the lattice constant a) at temperatures
T = 1.65 (black circles) and T = 2.0 (white diamonds) in the case
of second degenerate configuration. Nz = 8, N0 = 1600, and Js =
J = −1.0.
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FIG. 8. Resistivity versus temperature in the case of second
degenerate state for D1 = a (black circles) and D1 = 1.25a (white
circles) with Nz = 8, N0 = 1600, Js = J = −1.0, I0 = K0 = 0.5,
and D = 0.35.

maximum of the resistivity. These quantities are closely related
to each other as expected from the physical picture described
above.

We can approximately identify the intervals of D1 where ρ

jumps (falls) by looking at the top panel of Fig. 7: at a given
D1, ρ jumps (falls) when ρ at T = 1.65 is lower (higher) than
that at T = 2.

C. Surface effects

To enhance the surface effect, in addition to a small value of
Js , we allow the exchange interaction between a surface spin
and its neighbors in the beneath layer to be Jp which will be
taken to be small in magnitude. We show in Fig. 9 the surface
magnetization and the magnetizations of the interior layers
as functions of T for Js = Jp = −0.5 and J = −1. As seen
here, the surface transition takes place at a lower temperature
T1 � 1.2 while interior layers become disordered at T2 � 1.8.
As a consequence, one expects that the surface fluctuations at
T1 will induce an anomaly in ρ in addition to that at T2. This
is shown in Fig. 10. Note that the increase of ρ at low T is an
effect of a pseudocrystallization of itinerant spins at low T as
discussed above.

FIG. 9. Layer magnetizations versus T for Js = Jp = −0.5 and
J = −1. Other parameters: D1 = a, Nz = 8, N0 = 1600, I0 = K0 =
0.5, and D = 0.35. The surface transition is at T1 � 1.2. The vertical
dotted line is a guide to the eye indicating the discontinuous fall of
interior layer magnetization.

FIG. 10. Resistivity versus temperature T in the case shown in
Fig. 9. There are two anomalies occurring, respectively, at the surface
transition temperature and at the bulk one.

D. Traveling paths

Let us show now how the itinerant spins choose their
paths to travel across the lattice. We show in Fig. 11 the
energy landscape at T = 1 for both degenerate configurations.
This gives some information concerning the spatial energy
distribution in the system.

As we said above, the spin motion depends solely on the
spin energy due to its interaction with surrounding spins.
The lower energy it has the longer it stays in that position.
By examining the different traveling paths we come to this
observation: for a given D1, the itinerant spin will choose its
path where its energy is low. This is understandable from the
viewpoint of statistical physics. Paradoxically, by choosing
low-energy paths, its motion is slowed down because, as said
earlier, itinerant spins feel energetically at ease so they do not
want to move. So, depending on the value of D1, itinerant
spins will move near up-spin planes or near down-spin planes
to have a low energy (see Fig. 12).

Let us show now in Fig. 13 how the spins travel across the
system. As seen, for equal travel time an itinerant spin moves
faster and farther in the first degenerate configuration than in
the second one for D1 = a. This can be understood because
the itinerant (up) spin is stopped for a more or less long time in
front of a wall of down spins perpendicular to its x trajectory
in the second degenerate configuration. However, when D1

is very large, for instance 1.4a, there is no more difference
between the two configurations because the distance is long
enough for an itinerant spin to see other spins across down-spin
walls.

x

y

za 2a a 2a

FIG. 11. Energy landscape at T = 1 in a cubic box of 2a × 2a ×
2a dimension where a is the lattice parameter, for the first and second
degenerate configurations (left and right, respectively). The energy
scale is indicated on the figure.
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FIG. 12. (Color online) Three-dimensional antiferromagnetic fcc
lattice at T = 1, where lattice down spins are presented in red, up
spins in yellow, and itinerant spins (which are up) in white. The plane
shown is the xy plane with the x direction (spin flow direction) being
horizontal. Left: snapshot in the case D1 = a. Right: snapshot in the
case D1 = 1.4a.

E. Discussion

Let us recall that in ferromagnets, ρ shows a peak at
TC . This peak was interpreted as a consequence of spin-
spin correlation. The form of the peak depends on the
correlation range.1,2,4 Other interpretations which were based
on scattering by defect clusters25 or by impurities28 are
all in agreement. In antiferromagnets, the situation is quite
different. Unlike in ferromagnets where itinerant spins are
slowed down only when they encounter antiparallel spins of
defect clusters, in antiferromagnets itinerant spins see both
parallel and antiparallel spins in any of their positions, so
their motion depends drastically on their immediate local spin
configuration whose energy is determined by the interaction
range D1. In addition, the behavior of the spin resistivity
in antiferromagnets depends on several other ingredients,
among which one can mention the crystal structure, the
nature of the magnetic ordering, and the spin model. We
have simulated some nonfrustrated antiferromagnets such as
Ising antiferromagnetic simple cubic (SC) and body-centered
cubic (bcc) lattices. The spin resistivity shows no peak in these
cases.29

IV. RESULTS FOR THE HEISENBERG CASE

In this section, we present briefly the results on the same
lattice with the Heisenberg spin model. The itinerant spins are
the same as used above, namely polarized Ising spins. This
assumption allows to outline only the effect of the continuous
nature of the Heisenberg lattice spin on the resistivity. The
full Hamiltonian with different kinds of interaction is assumed
as above except for the exchange interaction between lattice
spins. This is given by

H = −
∑

〈i,j〉
Ji,j Si · Sj − A

∑

〈i,j〉
Sz

i S
z
j , (9)

where Si is the Heisenberg spin at the site i and A an
Ising-like anisotropy which is assumed to be negative to favor
an antiparallel spin ordering on the z axis. When A is zero,
one has the isotropic Heisenberg model. To have at phase
transition at a nonzero T , we should take a nonzero value for
A because it is known, by the theorem of Mermin-Wagner,39

that for vector spin models there is no long-ranged ordering at
finite temperatures in two dimensions. The small thickness

FIG. 13. (Color online) Travel path of an itinerant spin at T = 1
in the first degenerate state (top) and in the second degenerate state
(bottom) during an equal travel time with D1 = a. As seen, spins
move more easily in the first degenerate configuration than in the
second one. Other parameters are N0 = 1600, I0 = K0 = 0.5, D =
0.35, Js = J = −1.0

considered here is, in a phase-transition point of view,
equivalent to a two-dimensional system. With the exception
of A, note that we use the same assumptions as in Eq. (1).

The transition temperature with A = −1 is TC � 0.79 for
the lattice size Nx = Ny = 20, Nz = 8. We use here the same
analysis as for the Ising case above: we first look at the
effect of D1 on the resistivity at two temperatures, one lower
and one higher than TC . This is shown in Fig. 14 where
the upper (lower) figure is for the first (second) degenerate
spin configuration. Again here, one observes that the two
degenerate states do not yield the same transport properties as
in the Ising case. The same remarks on the physical mechanism
are thus applied (see Secs. III A and III B).

Let us show now in Fig. 15 the resistivity as a function
of T for two typical values of D1. As seen, depending on
the value of D1, ρ undergoes a sharp increase or decrease at
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FIG. 14. Heisenberg case. Resistivity, spin velocity, and energy
of itinerant spin versus D1 (in units of the lattice constant a) at temper-
atures T = 0.75 (black circles) and T = 0.85 (white diamonds) for
first (top) and second (bottom) degenerate configurations. A = −1,
Nz = 8, N0 = 1600, and Js = J = −1.0.

TC . At some values such as that corresponding to the upper
curve of the upper figure, the resistivity can go across a large
region of fluctuations without a sharp jump. So in experiments
care should be taken to interpret similar behavior, if any. Note
that the second degenerate configuration yields always a larger
resistivity than in the first one, as observed in the Ising case in
the previous section.

The effect of A on the resistivity is not very important in the
reasonable range [−0.1,−1.5]: except the fact that TC varies
with A, for instance, TC � 0.65 for A = −0.5 and TC � 0.55
for A = −0.1, the discontinuity of ρ at TC diminishes only
slightly with decreasing A.

V. CONCLUSION

The model used in this paper is rather general. It has
been applied to ferromagnets with success.25 We believe
that it can be applied to different materials by choosing
appropriate interactions. For example, in metals we have
to reduce to almost zero the interaction between itinerant
spins and lattice spins to create the situation of almost-free
conduction electrons. The lattice disordering transition in
magnetic metals then should not strongly affect the spin
resistivity. In semiconductors, that interaction should be strong
enough to reproduce a peak of ρ as experimentally observed.

We have shown in this paper that the spin resistivity ρ of
the fully frustrated fcc antiferromagnet is quite different from
that of ferromagnets25 and nonfrustrated antiferromagnets.29

ρ does not show a peak at the magnetic phase transition

FIG. 15. Heisenberg case. Resistivity of thin film of size Nx =
Ny = 20 and Nz = 8 for N0 = 1600 itinerant spins versus T for
D1 = a (black circles) and D1 = 1.25a (white circles) in units of the
lattice constant a for first (top) and second (bottom) degenerate states.
A = −1, Js = J = −1.0, I0 = K0 = 0.5, and D = 0.35.

temperature. It shows instead a discontinuous jump at the
transition temperature TC . The jump depends on the numbers
of parallel and antiparallel localized spins which interact with
an itinerant spin. After transition, the resistivity tends to a
saturation value independent of D1. The abrupt behavior of ρ

at TC in the AF fcc Ising lattice is an effect of the frustration
which causes a first-order transition of the lattice magnetic
ordering leading to a discontinuity of ρ at TC .

We are not aware of experiments performed on spin
transport in materials with first-order magnetic transition. Our
result is thus a prediction which would be useful for future
experiments. Note, however, that for electrical transport, the
electrical resistivity shows a discontinuity at a metal-insulator
“first-order” transition in PrNiO3

40 and NdNiO3 (Ref. 41).
Our magnetic resistivity found in this paper has also a
discontinuity behavior at a magnetic “first-order” transition.
This similarity shows that the resistivity is closely related to the
nature of the phase transition, whatever its origin (magnetic,
insulator-metal, etc.) may be. The mapping between the two
cases, however, is not the scope of this paper.

We have also shown that the surface disordering causes a
peak of the resistivity at the surface transition temperature.
In the Heisenberg model, the spin continuous degrees of
freedom weaken the first-order transition, yielding, in general,
a reduction of the critical temperature and a less abrupt change
of the resistivity at the transition.

As a last remark, let us emphasize that the behavior
of the spin resistivity at TC is quite different from one
antiferromagnet to another. It depends on many factors such

144406-8



SPIN RESISTIVITY IN FRUSTRATED ANTIFERROMAGNETS PHYSICAL REVIEW B 83, 144406 (2011)

as the lattice structure, the interaction range, the spin model,
and the instability (in particular, due to frustration) of the spin
ordering. We have studied here the effects of some of them,
but a thorough understanding needs much more investigation
and analysis.
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