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We study in this paper the resistivity encountered by Ising itinerant spins traveling
in the so-called J1 − J2 frustrated simple cubic Ising lattice. For the lattice, we take
into account the interactions between nearest-neighbors and next-nearest-neighbors, J1
and J2 respectively. Itinerant spins interact with lattice spins via a distance-dependent
interaction. We also take into account an interaction between itinerant spins. The lattice
is frustrated in a range of J2 in which we show that it undergoes a very strong first-order
transition. Using Monte Carlo simulation, we calculate the resistivity ρ of the itinerant
spins and show that the first-order transition of the lattice causes a discontinuity of ρ.
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1. Introduction

One of the most fascinating subjects in condensed matter physics is the study of

the resistivity encountered by conduction electrons in crystals. Fifty years ago,

the effect of the magnetic ordering of the crystal on the electron resistivity began

to attract investigations. It has been shown that at very low temperature (T )

the resistivity is dominated by spin-wave scattering, the spin resistivity ρ is then

proportional to T 2 in ferromagnets.1,2 In the region of the ferromagnetic phase

transition, ρ shows a peak at the transition temperature TC similar to the magnetic

susceptibility. De Gennes and Friedel3 have suggested that this behavior is due

to the spin–spin correlation. Several approximations have been used to treat this

correlation appearing in several formulations,4,5 in particular in the Boltzmann’s

equation.6,7 Recently, we have introduced a Monte Carlo (MC) simulation technique

to deal with the spin resistivity. Our results for ferromagnets are in agreement with

other theories, in particular the existence of the peak at TC and its dependence

on the strength of magnetic field and density of itinerant spins.8,9 In unfrustrated

antiferromagnets, there have been a few investigations. Some theories predicted the

absence of a sharp peak at TC .
6 We have shown by MC simulations that this is

true, however the form of the rounded peak depends on the crystal structure and
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other interaction parameters.10,11 Note that MC simulation has been used only

recently to study spin transport. Among the works which are similar to ours one

can mention the paper by Sen et al.12 and the paper by Yuan et al.13 The former

has studied the transport in manganites by using a double-orbital model while the

latter has investigated the case of doped manganese perovskites. Both have found

a colossal magnetoresistance at the magnetic phase transition similar to our results

obtained directly from the system Hamiltonian as seen in our previous works8–11

and in this paper.

Experimentally, there has been a large number of works dealing with the

spin resistivity in different magnetic compounds.14–24 These experiments show the

existence of an anomaly of ρ at the magnetic phase transition. The shape of this

anomaly depends on the material. This observation stimulates us to consider various

kinds of systems.

One class of interesting magnetic systems is called “frustrated systems”

introduced in the 1970s in the context of spin glasses. The magnetic structure

of these systems can be complex since degeneracy is expected to occur due to the

competition between different kinds of interaction. However they are periodically

defined (no disorder) and therefore subject to exact treatments. This is the case of

several models in two dimensions,25 but in three dimensions frustrated systems are

far from being understood even on basic properties such as the order of the phase

transition (first or second order, values of critical exponents, . . . ). Let us recall the

definition of a frustrated system. When a spin cannot fully satisfy energetically

all the interactions with its neighbors, it is “frustrated”. This occurs when the

interactions are in competition with each other or when the lattice geometry

does not allow one to satisfy all interaction bonds simultaneously. A well-known

example is the stacked triangular lattice with antiferromagnetic interaction between

nearest-neighbors. The frustration in spin systems causes many unusual properties

such as large ground state (GS) degeneracy, successive phase transitions with

complicated nature, partially disordered phases, reentrance and disorder lines.

Frustrated systems still constitute at present a challenge for investigation methods.

For recent reviews, the reader is referred to Ref. 26.

Motivated by their exotic behaviors, we have studied some frustrated systems

and found that ρ depends drastically on the range of interaction, and that ρ shows

a discontinuity at TC reflecting the first-order character of the phase transition.27

This work aims at confirming the fact that in systems with first-order

transitions, ρ should have a discontinuity at TC . For that purpose, we consider

in this paper the so-called J1−J2 simple cubic lattice with Ising spins. This system

is known to undergo a very strong first-order transition in the Heisenberg case.28

The Ising case studied here shows also a very strong first-order transition as shown

below.

In Sec. 2, we present our model and MC method. The results are shown in

Sec. 3. Concluding remarks are given in Sec. 4.
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Fig. 1. Simple cubic lattice with nearest and next-nearest neighbor interactions, J1 and J2,
indicated.

2. Model and Method

2.1. Model

We consider the simple cubic lattice shown in Fig. 1. The spins are the classical

Ising model of magnitude S = 1. The Hamiltonian is given by

H = −J1
∑

(i,j)

Si · Sj − J2
∑

(i,m)

Si · Sm , (1)

where Si is the Ising spin at the lattice site i,
∑

(i,j) is made over the NN spin pairs

Si and Sj with interaction J1, while
∑

(i,m) is performed over the NNN pairs with

interaction J2. We are interested in the frustrated regime. Therefore, hereafter we

suppose that J1 = −J (J > 0, antiferromagnetic interaction, and J2 = −ηJ where

η is a positive parameter. The ground state (GS) of this system is easy to obtain,

either by minimizing the energy, or by comparing the energies of different spin

configurations, or just a numerical minimizing by a steepest descent method.29 We

obtain the antiferromagnetic (AF) configuration shown by the upper figure of Fig. 2

for |J2| < 0.25|J1|, or the configuration shown in the lower figure for |J2| > 0.25|J1|.

Note that this latter configuration is three-fold degenerate by putting the parallel

NN spins on x, y or z-axis. With the permutation of black and white spins, the

total degeneracy is thus 6.

The phase transition of this model in the frustrated region (|J2| > 0.25|J1|) has

been studied by Pinettes and Diep28 in the case of the Heisenberg model. It has

been found that the transition is strongly of first-order. The ordered phase is very

unstable due to its degeneracy. As will be shown below, the case of the Ising case

shows an even stronger first-order transition. It is therefore interesting to investigate

the resistivity of itinerant spins traveling across such a system.

The model we use here to study the spin transport takes into account the

following interactions:

• Interaction between lattice spins given by Eq. (1)

• Interaction between itinerant spins and lattice spins given by

Hr = −
∑

i,j

Ii,jσi · Sj , (2)
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Fig. 2. Simple cubic lattice. Up-spins: white circles, down-spins: black circles. Upper: Ground
state when |J2| < 0.25|J1|, lower: Ground state when |J2| > 0.25|J1|.

where σi is the Ising spin of itinerant electron and Ii,j denotes the interaction

that depends on the distance between an electron i and the spin Sj at the lattice

site j. We use the following interaction expression:

Ii,j = I0e
−αrij with rij = |ri − rj | , (3)

where I0 and α are constants which will be chosen in Sec. 2.2. The interaction

range is limited in a sphere of radius D1.

• Interaction between itinerant spins. In the same way, interaction between

itinerant electrons is defined by

Hm = −
∑

i,j

Ki,jσi · σj , (4)

Ki,j = K0e
−βrij , (5)

with σi the spin of itinerant electron and Ki,j the interaction that depends on

the distance between electrons i and j. The choice of the constants K0 and β is

discussed in Sec. 2.2. The interaction range is limited in a sphere of radius D2.

• Chemical potential term: Since the interaction between itinerant electron spins

is attractive, we need to add a chemical potential in order to avoid a possible

collapse of electrons into some points in the crystal and to ensure a homogeneous

distribution of electrons during the simulation. The chemical potential term is

given by

Hc = D∇rn(r) , (6)
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where n(r) is the concentration of itinerant spins in the sphere of D2 radius,

centered at r. D is a constant parameter appropriately chosen.

• Electric field term:

HE = −eε · ` (7)

where e is the charge of electron, ε the applied electric field and ` the displacement

vector of an electron.

Note that in Eq. (6) the chemical potential proportional to density, as it is for

perfect gases, leads to a density gradient term in the Boltzmann’s equation. This

electrochemical potential contains a term proportional to electron density times

the electric potential as written in Eq. (7) in the case of a uniform electric field. Of

course the difference between Eqs. (6) and (7) is due to the fact that the electric

field in Eq. (6) is due to internal charges while in Eq. (7) it is due to an external

potential.

2.2. Choice of parameters and units

Note that the effect of the crystal magnetic ordering on the resistivity is dominated

by the first two interactions. We will show below the results obtained for typical

values of parameters. The choice of the parameters has been made after numerous

test runs. We describe the principal requirements which guide the choice:

(i) We choose the NN interaction between lattice spins as unity, i.e. |J | = 1.

(ii) We choose interaction between an itinerant and its surrounding lattice spins

so as its energy Ei in the low T region is the same order of magnitude as that

between lattice spins. To simplify, we take α = 1.

(iii) Interaction between itinerant spins is chosen so that this contribution to the

itinerant spin energy is smaller than Ei in order to highlight the effect of the

lattice ordering on the spin current. To simplify, we take β = 1.

(iv) The choice of D is made in such a way to avoid the formation of clusters of

itinerant spins (collapse) due to their attractive interaction [Eq. (5)].

(v) The electric field is chosen to be not so strong in order to avoid its dominant

effect that would mask the effects of thermal fluctuations and of the magnetic

ordering.

(vi) The density of the itinerant spins is chosen in a way that the contribution of

interactions between themselves is neither so weak nor so strong with respect

to Ei.

Within these requirements, a variation of each parameter does not change

qualitatively the results shown below. As will be seen, only the variation of D1

changes the results drastically. That is the reason why we will study in detail the

effect of this parameter. For larger densities of itinerant spins, the resistivity is

larger as expected because of additional scattering process between itinerant spins.
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We fix J1 = −J = −1 (AF interaction) for NN coupling of lattice spins as said

above. The energy is thus measured in the unit of J . The temperature is expressed

in the unit of J/kB. The distance (D1, D2) is in the unit of a, the lattice constant.

The resistivity is in atomic units and the magnetization is dimensionless.

2.3. Simulation Method

We consider a film with a thickness of Nz cubic cells in the z-direction. Each of

the xy planes contains Nx × Ny cells. The periodic boundary conditions are used

on the xy planes to ensure that the itinerant electrons who leave the system at the

second end are to be reinserted at the first end. For the z-direction, we use the

mirror reflection at the two surfaces. These boundary conditions conserve thus

the average density of itinerant electrons. Dynamics of itinerant electrons is created

by an electric field applied along the x-axis.

Simulations are carried out in the following manner. The lattice spins are

equilibrated at a temperature T . Itinerant spins are then injected into the system.

Before calculating thermal averages of transport properties, we equilibrate itinerant

spins during a large number of MC steps. The multi-step averaging procedure

has been used to get good statistics:11 Averaging is made between re-equilibrating

periods of lattice and itinerant spins to explore a maximum number of microscopic

spin configurations.

3. Results

We show first the result of the lattice alone, namely without itinerant spins. The

lattice in the frustrated region, i.e. |J2/J1| > 0.25, shows a strong first-order

transition as seen in Fig. 3. The sublattice magnetization and the energy per spin

as functions of T for J2 = −0.26|J1| for the lattice size Nx = Ny = 20, Nz = 6

show a discontinuity at the transition temperature. To check further the first-order

nature of the transition, we have calculated the energy histogram at the transition

temperature TC . This is shown in Fig. 4. The double-peak structure indicates the

coexistence of the ordered and disordered phases at TC . The distance between two

peaks represents the latent heat.

Now we consider the lattice with the presence of itinerant spins. As far as the

interaction between itinerant spins is attractive, we need a chemical potential to

avoid the collapse of the system. The strength of the chemical potential D depends

on K0. We show in Fig. 5 the collapse phase diagram which allows to choose for a

given K0, an appropriate value of D.

We show now the main result on the spin resistivity versus T for |J2| = 0.26|J1|

for several values of D1. Other parameters are the same as in Fig. 3. As said in

Sec. 2.2, within the physical constraints, the variation of most of the parameters

does not change qualitatively the physical effects observed in simulations, except

for the parameterD1. Due to the AF ordering, increasingD1 means that we include

successively neighboring down and up spins surrounding a given itinerant spin. As

M
od

. P
hy

s.
 L

et
t. 

B
 2

01
1.

25
:9

37
-9

45
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
H

A
N

G
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 &
 T

E
C

H
N

O
L

O
G

Y
 (

PO
ST

E
C

H
) 

T
A

E
-J

O
O

N
 P

A
R

K
 D

IG
IT

A
L

 L
IB

R
A

R
Y

 o
n 

11
/0

8/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



May 12, 2011 16:33 WSPC/147-MPLB S0217984911026644

Spin Resistivity in the Frustrated J1 − J2 Model 943

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.9  1  1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

M

T

-1.6
-1.5
-1.4
-1.3
-1.2
-1.1

-1
-0.9
-0.8

 0.9  1  1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

E

T

Fig. 3. Upper: Sublattice magnetization M versus T , Lower: Energy versus T , for |J2| = 0.26|J1|,
Nx = Ny = 20, Nz = 6.
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Fig. 4. Energy histogram taken at the transition temperature TC for J2 = −0.26|J1|: black circles
are for Nx = Ny = 20, Nz = 6, TC = 1.320, void circles for Nx = Ny = 30, Nz = 6, TC = 1.320
and black triangles for Nx = Ny = 20, Nz = 10, TC = 1.305. Other parameters are I0 = K0 = 0.5,
D1 = 0.8a, D2 = a, D = 1, ε = 1.

a consequence, the energy of the itinerant spin oscillates with varying D1, giving

rise to the change of behavior of ρ: ρ can make a down fall or an upward jump

at TC depending on the value of D1 as shown in Fig. 6. Note the discontinuity of

ρ at TC . This behavior has been observed and analyzed in terms of the averaged

magnetization in the sphere of radius D1 in the frustrated FCC antiferromagnet.27
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Fig. 5. Phase diagram in the plane (K0,D). The collapse region is in black, for |J2| = 0.26|J1|.
Other parameters are D1 = D2 = a, I0 = 0.5, ε = 1.

 85

 90

 95

 100
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 110

 0.9  1  1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

ρ

T

Fig. 6. Spin resistivity versus T for |J2| = 0.26|J1| for several values of D1: from up to down
D1 = 0.7a, 0.8a, 0.94a, a, 1.2a. Other parameters are Nx = Ny = 20, Nz = 6, I0 = K0 = 0.5,
D2 = a, D = 1, ε = 1.

4. Concluding Remarks

From the results shown above for the strongly frustrated J1−J2 model, we conclude

that the spin resistivity reflects the nature of the first-order transition: it undergoes

a discontinuity at the transition temperature. The fact that as T → 0, ρ increases

slowly stems from the freezing of itinerant spins with decreasing T . This has been

experimentally observed in ferromagnets and antiferromagnets as seen in Fig. 11

of the paper by Chandra et al. on CdMnTe,16 Fig. 2 of the paper by Du et al.

for MnFeGe,22 Fig. 6(a) of the paper by McGuire et al. on AF superconductors

LaFeAsO,24 Fig. 2 of the paper by Lu et al. on AF LaCaMnO,21 and Fig. 7 of the

paper by Santos et al. on AF LaSrMnO.19

We hope that these MC results will stimulate further theoretical calculations

and experiments.
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