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Abstract

Single-walled carbon nanotubes are hollow cylinders, that can grow centimers long by carbon incorpora-

tion at their interface with a catalyst. They display semi-conducting or metallic characteristics, depending

on their helicity, that is determined during their growth. To support the quest for a selective synthesis, highly

desirable for applications, we develop a thermodynamic model, that relates the tube-catalyst interfacial en-

ergies, temperature, and the resulting tube chirality. We show that nanotubes can grow chiral because of

the configurational entropy of their nanometer-sized edge, thus explaining experimentally observed tem-

perature evolutions of chiral distributions. Taking the chemical nature of the catalyst into account through

interfacial energies, structural maps and phase diagrams are derived, that will guide a rational choice of a

catalyst and growth parameters towards a better selectivity.
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Synthesizing carbon nanotubes pushes crystal growth to its size limit. Like nanowires[1], car-

bon nanotubes are fed during growth from their interface with a catalyst[2]. Nanowire interfaces

are large, in the 10-50 nm diameter range, while single-walled nanotubes (SWNT) have smaller

diameter, and, in some cases, the contact between the tube and its seeding particle is reduced to

a line, with typically 10-50 carbon atoms. Such a linear interface is simple to deal with, and we

propose here a thermodynamic model of the interface, from which we derive structural maps and

phase diagrams linking catalyst properties, experimental conditions, and the corresponding stable

tube structure, characterized by its (n,m) chiral indexes. This will provide a rational basis for

the quest of a selective growth of SWNTs. Indeed, a growing number of potential applications

require control over the metallic or semi-conducting properties of SWNTs. Among these, the use

of SWNT yarns as strong, light and conductive wires is a promising perspective[3], but the next

major challenge is to develop SWNT-based electronics [4], with the ultimate goal of overcoming

the limitations of silicon. Significant breakthroughs have been reported [5] and progress towards

Carbon Nanotube computers [6, 7] has been very rapid. In this chain of substantial steps forward,

selective synthesis still appears to be the weak link, though new experiments using solid state

catalysts[8–10] have reported a chiral specific growth of SWNTs. Detailed mechanisms under-

lying this selective growth are still debated, and the resulting (n,m) tube structures difficult to

interpret, thus underlining the need for a realistic model including the role of the catalyst. Existing

growth models either focus on kinetics [11], or neglect the role of the catalyst [12], or combine

thermodynamics and kinetics [13], but fail to calculate chiral distributions in line with experi-

ments. Atomistic computer simulations are often preferred [14, 15], giving invaluable atomic

scale insights, but need to be complemented with a model so as to provide a global understanding

of the process.

In order to build such a model, we start by recalling some experimental evidences. Vapor Liq-

uid Solid and Vapor Solid Solid Chemical Vapor Deposition (CVD) processes have been identified

[9], the latter leading to a (n,m) selectivity. Growth can proceed through tangential or perpen-

dicular modes[16], and ways to control them have been proposed quite recently[17]. For specific

catalysts and growth conditions favoring the perpendicular mode, a pronounced near armchair se-

lectivity can be observed [17]. In such a mode, the interface between the tube and the catalyst

nanoparticle (NP) is limited to a line, and a simple model describing the thermodynamic stability

of the tube-nanoparticle system can be developed. We thus consider an ensemble of configurations

of a catalyst NP, possibly a metal or a carbide, in perpendicular contact with a (n,m) SWNT, as
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in Figure 1. The total numbers of carbon and catalyst atoms are constant. Configurations differ by

the structure of the NP-tube interface, defined by (n,m), for which we have (n +m) SWNT-NP

bonds, with typically 10 < n + m < 50. On the tube edge, 2 m among them are armchair, and

(n − m) zigzag [18]. In a first approximation, the atomic structure of the NP is neglected, and

the catalyst appears as a smooth flat surface, in a jellium-like approximation. The interface is then

a simple closed loop with two kinds of species: armchair and zigzag contact atoms. Under these

conditions, the total energy of the system can be split in three terms:

E(n,m) = E0 + Ecurv(n,m) + EInt(n,m), (1)

where E0 includes all terms independent of (n,m), such as the energy of the 3-fold coordinated

carbon atoms in the tube wall, and the atoms forming the NP. The surface energy of the NP and

the very weak surface energy of the tube are also included in E0, because these surfaces are

kept constant. Note that this model could possibly apply also in tangential mode, if the lateral

tube/catalyst interaction does not depend on (n,m).

The (n,m) dependent energy terms concern the tube curvature, and its interface with the NP.

Using Density Functional Theory (DFT) calculations, Gülseren et al. [19] evaluated the cur-

vature energy of the isolated tube as Ecurv = 4αD−2
CNT , DCNT being the tube diameter, and

α = 2.14eV Å2 / C atom. We assume that the interfacial energy for a (n,m) tube in contact with

the NP surface depends only on the number of its 2m armchair and (n−m) zigzag contacts:

E
(n,m)
Int = 2mEA

Int + (n−m) EZ
Int (2)

where the armchair (EA
Int) and zigzag (EZ

Int) interfacial energies are given by EX
Int = γXG + EX

Adh,

with X standing for A or Z. The edge energy per dangling bond, γXG , is positive since it is the

energy cost of cutting a tube or a graphene ribbon, and depends on the type of edge created. The

adhesion energy of the tube in contact with the NP, EAdh, is negative since energy is gained by

reconnecting a cut tube to the NP.EInt, sum of these two terms has to be positive to create a driving

force for SWNT formation. In a simple approximation, supported by DFT calculations reported in

Figure 2-b, no ordering effects are taken into account in equation 2, meaning that all tube catalyst

interfaces with the same number of armchair and zigzag contacts have the same energy.

This leads us to introduce the edge configurational entropy as a central piece of the model. We

assume that the tube is cut almost perpendicular to its axis, forming the shortest possible interface,

for a given (n,m). We neglect vibrational entropy contributions, that are essentially the same for
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FIG. 1. (Color online) From experiments to a model. Top: post-synthesis TEM images of a SWNT at-

tached to the nanoparticle from which it grew at 1073 K, using either CH4 (a), or CO (b) carbon feedstocks,

leading to tangential or perpendicular growth mode ([17]), illustrated at the atomic scale in the bottom line.

Sketch of the model (c), with a SWNT in perpendicular contact with a structureless catalyst. Armchair edge

atoms are in red, zigzag ones in blue.

all tubes, except for radial breathing modes. Noting that armchair 2-fold coordinated C atoms

always come by pair, this entropy, related to the number of ways of putting (n − m) zigzag C

atoms and m pairs of armchair atoms on n sites (degeneracy) writes:

S(n,m)

kB
= ln

(
n!

m!(n−m)!

)
≈ −n (c ln c+ (1− c) ln(1− c)) (3)

where c = m/n, the fraction of armchair pairs, is reminiscent of the mole fraction in a regular

solution model.

Interfacial energies can be evaluated using DFT calculations, described in Supplementary Ma-

terials. In agreement with[18, 20], we find γAG = 2.06 eV / bond and γZG = 3.17 eV / bond for

graphene, and 1.99 and 3.12 respectively for cutting (6, 6) and (12, 0) tubes. The lower value of

γAG is due to the relaxation (shortening) of the C-C bonds of the armchair edge that stabilizes it.

Adhesion energies of (10,0) and (5,5) tubes on icosahedral clusters of various metals, including
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FIG. 2. (Color online) Key elements of the model. Top Different ways of cutting a (8, 4) tube, leading

to the formation of zigzag (blue) and armchair (red) undercoordinated atoms. For a (8, 4) tube, there are

70 different edge configurations with almost the same energy. Bottom Formation energies of all possible

(8, 4) edges, from DFT calculations described in Methods. They lie within 25 meV / bond, and can thus be

considered degenerate.

Fe, Co, Ni, Cu, Pd and Au were calculated in [21, 22]. Thus, orders of magnitude for interface

energies, EInt, of armchair and zigzag terminations in contact with these metals can be estimated:

they typically lie between 0.0 and 0.5 eV / bond, with EA
Int < EZ

Int for these metals. Examples

of free energies, and corresponding probability distributions are plotted as a function of (n,m) in

Figures S1.

Instead of focusing on a specific catalytic system, it is more relevant at this stage to study the

general properties of the model that links the (n,m) indexes of a SWNT, to three parameters char-

acterizing its CVD growth conditions, namely temperature and the interfacial energies of armchair

(EA
Int) and zigzag (EZ

Int) tube-catalyst contacts. For each set of parameters, a free energy can be

calculated, and its minimization yields the stable (n,m) value. This model displays similarities

with a simple alloy model on a linear chair, but the curvature term, dominant for small diameters,

and the small and discrete values of n and m, prevent to make it analytically solvable, except for

ground states, i.e. stable structures at zero Kelvin, for which a solution is provided in Methods.
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We thus define a 3-dimensional space of stable configurations in the (T, EA
Int, E

Z
Int) coordinates.

FIG. 3. (Color online) Structural maps. a) Map of the ground states, with armchair tubes in the lower right

corner, and zigzag ones in the upper left corner, separated by a line EZ
Int = 4/3EA

Int. Small diameter tubes,

e.g. (5, 5) and (8, 0), are obtained for large values of the interfacial energies EInt, while stability domains

of large diameter tubes are narrower, with a width decaying as 1
n(n+1) , and obtained for small values of

EInt. b) Contour plot of the highest temperatures of stability of the ground state structures, armchair or

zigzag. Chiral tubes are only found above this surface, stabilized by the configurational entropy of the tube’s

edge. Note that armchair and zigzag tubes can remain stable at high temperatures, in the bottom right and

upper left corners respectively. c) Chirality map at 1000 K. Iso-n (resp. iso-m) values are delimited by full

black (resp. dashed blue) lines. Metallic tubes, for which (n−m) is a multiple of 3, are shown in brick red,

and semi-conducting ones are flesh-colored. The parameter space for armchair (metallic) and (n, n − 1)

and (n, n− 2) (semi-conducting) tubes is larger than for other chiralities.

Setting T , and hence the entropy contribution to zero, the ground states are readily calculated

and displayed in Figure 3-a. Interestingly, only armchair or zigzag tubes are found to be stable,

separated by a line EZ
Int = 4/3EA

Int. With increasing temperature, they become unstable, and a

transition towards chiral tubes takes place. Figure 3-b is a contour plot of the surface defined by

the transition temperatures. Above this surface, for each set of (EA
Int, E

Z
Int, T ) parameters, a chiral

(n,m) tube is found stable, defining ”volumes” of stability for each chirality. To explore it, we

can either cut slices at constant temperature to obtain an isothermal stability map (Figure 3-c), or

fix either EA
Int or EZ

Int to obtain temperature dependent ”phase diagrams”, as in Figures 4-a (for

EA
Int = 0.15 eV / bond) and 4-b (for EZ

Int = 0.25 eV / bond). As an example, we can follow the

temperature stability of a (6, 6) tube. Figure 4-a shows a large stability range with a maximal

stability temperature rising from 200 to 800 K by increasing EZ
Int from 0.20 to 0.30 eV / bond,
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whereas the second map, orthogonal to the first one in the 3-d configuration space, shows an upper

temperature limit varying from 500 to 700 K, within a narrower EA
Int range. Above the armchair

tubes, chiral (n, n−m) tubes become stable starting with (n, n−1), and then with increasing n−m

values such as (6,5), (7,5), etc ... A first and important result is that chiral tubes, i.e. tubes different

from armchair or zigzag, are stabilized at finite temperature by the configurational entropy of the

tube edge.

An isothermal map calculated at 1000 K is plotted in Figure 3-c. Chiral tubes are spread

along the EZ
Int = 4/3EA

Int diagonal, between armchair and zigzag ones. Small diameter tubes are

stabilized for larger values of (EA
Int, E

Z
Int), hence for weaker adhesion energies of the tube on the

catalyst. Larger diameter tubes are obtained for small values of (EA
Int, E

Z
Int), because the entropy

cannot counterbalance the energy cost of the interface, proportional to (n + m), if interfacial

energies are too large. A comparison of maps at 1000 to 1400 K is given in Figure S2. The effect

of increasing temperature is to expand and shift the stability domain of chiral tubes, with a trend to

favor central (2n, n) chiralities. We note however that the free energy differences become smaller,

thus explaining the lack of selectivity reported for tubes grown at very high temperature by electric

arc or laser ablation methods [23].

This very simple model has the advantage of a great physical transparency and displays a fair

agreement with literature data, as illustrated in the following examples. Figure 3-b, suggests a way

to grow either zigzag or armchair tubes, the latter being metallic for any diameter. For both, growth

kinetics is slow, because each new ring of carbon atoms has to nucleate, once the previous one has

been completed [12, 13]. To overcome this nucleation barrier, one should seek regions in the map,

where such tubes remain stable at high temperature. For armchair species, this corresponds to the

lower right corner of the map in Figure 3-b, where the adhesion energy of armchair edges is strong,

and that of zigzag ones is weak, and the contrary for the interfacial energies. Such requirements

have possibly been met in the high temperature (1473 K) CVD experiments reported in [24], that

also used thiophene in the feedstock. Those experiments, still unreproduced, might indicate that

the presence of sulfur at the interface could modify the relative interaction strength of zigzag and

armchair edges with the Fe NP. The temperature dependence of the chiral distribution, measured

by photoluminescence in [25], [26] and [27], and Raman and Transmission Electron spectrocopies

in [28] seems more robust. The maps presented in Figures 4-a and 4-b are quite consistent with

these experiments showing that armchair or near armchair chiralities -(6, 6) and (6, 5)- are grown

at low temperature (873 K), and that the chiral distribution gradually shifts towards larger chiral
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angles -(7, 5), (7, 6) and (8, 4), ...- at higher temperatures. Referring to our model, this suggests

that Co and Fe based catalysts used in these experiments correspond to interfacial energy values

around EA
Int = 0.15 and EZ

Int = 0.20 eV / bond, as indicated by the dashed boxes in the maps. Our

results also indicate that a large fraction of metallic tubes with neigboring helicities -(6, 6) and

(7, 4)-, not detectable by photoluminescence, should also be present in references [25] and [27].

The present model thus sets a global framework for understanding why a number of experi-

ments, using metallic catalysts in perpendicular growth conditions, as discussed in [17], report

a near armchair selectivity. For such catalysts, EA
Int is generally lower than EZ

Int[21]. At low

temperature, zigzag or armchair tubes are thermodynamically favored, but may not always be ob-

tained due to kinetic reasons. On the armchair side, our model indicates that close to armchair

helicities are then favored by a temperature increase, because their stability domain is large, and

they are less kinetically impaired[12]. At even higher temperatures, tube chiralities tending to-

wards (2n, n) indexes, should be stabilized by their larger edge configurational entropy, but their

stability domains turn out to be narrower in the present model. Taking the atomic structure of the

catalyst into account in our model could rule out some neighboring structures, and contribute to

open up these domains.

Concerning the practical use of these maps, a first issue is to select the appropriate location for

a catalyst in the (EA
Int, E

Z
Int, T ) coordinates, so as to obtain the desired tube helicity. Growing, on

demand, SWNTs with metallic or semi-conducting tubes is the central point. Looking at Figure 3-

c, one can see that the largest and most interesting parameter ranges correspond to either metallic

armchair tubes, or to (n, n− 1) and (n, n− 2) semi-conducting tubes. The second, more difficult

issue is to design a catalyst that would display appropriate EA
Int and EZ

Int values. DFT-based

calculations, in the same spirit as those in [8, 10, 21, 22, 29] should probably be helpful. Note

however that the argument of lattice or symmetry matching between the tube and the catalyst

[8, 10] is somewhat irrelevant, since it is clear that a chiral tube cannot preserve the symmetry of

its interface during growth, for the same reason that leads to the significant edge configurational

entropy. This intrinsic disorder should be taken into account by averaging over various atomic

configurations, and using Molecular Dynamics at finite temperature. By providing a rational basis

for the choice of an appropriate catalyst, the present work paves the way towards an efficient

selective SWNT growth. The key is now to find a practical way to tune the relative interaction of

zigzag and armchair edges with respect to the catalyst. In view of the huge investments already

made on SWNT growth, and of the potential rewards of selective growth, a smart combination of
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FIG. 4. (Color online) Chirality phase diagrams. Phase diagrams calculated for constant values of EA
Int

(a) and EZ
Int (b). These diagrams would be orthogonal in a 3-dimensional plot. The blue dashed boxes

indicate possible parameter ranges corresponding to the analysis of growth products by He et al.[27], based

on a photoluminescence assignment of tubes grown using a FeCu catalyst. (6, 5) are reported stable up to

1023 K, (7, 5) and (8, 4) become dominant at 1023 K, and (7, 6) at 1073 K.
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chemical intuition, supported by computational screening, and careful, innovative catalyst choice

should make it possible.

More fundamentally, the present model opens a new understanding of SWNT growth mech-

anisms. The intrinsic interfacial disorder, reflected by the importance of the entropy of the tube

edge, raises questions regarding the possibility to control the growing tube structure through a

crystalline structure of the catalyst. More than the crystallinity of the catalyst interface with the

tube, unlikely under growth conditions, our approach emphasizes the role of the chemical bonding

at the interface. This bonding between armchair or zigzag tube edges and the surface atoms of the

catalyst depends primarily on their local order, that is the type and organization of chemical bonds

formed. Another aspect is that the present model, purely based on a thermodynamic approach,

accounts for experimental evidences, such as a close to armchair preferential selectivity, hitherto

attributed to kinetics[12], the importance of choosing an appropriate catalyst, and the temperature

dependent trends in chiralities. While kinetics can drive the structure of nanowires[1], there might

be SWNT growth regimes where the atomic mobility and the residence time of atoms close to the

interface are large enough to achieve a local thermodynamic equilibrium, favored by the extremely

small size of the interface, and the high temperature. This makes SWNT synthesis a very special

case in crystal growth and catalysis.
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.

SUPPLEMENTARY MATERIAL OF : ENTROPY DRIVEN STABILITY OF CHIRAL SINGLE-

WALLED CARBON NANOTUBES.

DFT calculations

The first-principles code Quantum Espresso [1] employing density functional theory (DFT)

within the projector-augmented wave (PAW) method [2] is used to calculate the formation ener-

gies of all possible (8, 4) edges. The generalized gradient approximation (GGA) [3] is employed

for the exchange and correlation energy terms. We use a periodic cell allowing for 20 Å vac-

uum between the nanotubes to avoid interaction between neighboring supercells. Integrations

over the Brillouin zone are based on a (1x1x5) Monkhorst-Pack three-dimensional grid for cells

containing a tube of 150 to 200 atoms along the c axis. Cold smearing is used for the Brillouin

zone integration leading to formation energies converged to within 10−6 eV. The cell is kept fixed

and the atomic positions are relaxed using the conjugate gradient minimization scheme until the

magnitude of the forces on all the atoms are smaller than 0.04 Ry/au.

Thermodynamic model

The free energy F̂ (n,m, T ) of the system includes three (n,m) dependent terms :

EInt = (n−m)EZ
Int + 2mEA

Int

Ecurv = 4αD−2
CNT

−kBTS = −kBT ln

(
n!

m!(n−m)!

)
' kBT [m logm+ (n−m) log(n−m)− n log n]

The tube diameter is related to its (n,m) index by the relation DCNT =
√
3dCC

√
n2 + nm+m2

where dCC = 1.42 Å is the C-C bond distance. Ecurv can be written K(n+m)/(n2 + nm+m2)

where K = (4α)/(3d2CC). Therefore, F̂ (n,m, T ) writes :

F̂ (n,m, T ) = (n−m)EZ
Int + 2mEA

Int +K(n+m)/(n2 + nm+m2) (4)
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+ kBT [m logm+ (n−m) log(n−m)− n log n] .

For each set of (EA
Int, E

Z
Int, T ) the (n,m) set corresponding to the most stable SWNT is obtained

by minimizing the free energy F̂ (n,m, T ) with respect to n and m. This minimization can be

performed numerically in a straightforward way, leading to the results at non-zero temperature

presented in the body of the paper. For the sake of completeness, and for a better physical insight,

an analytical solution can be developed, though approximately at non-zero temperature.

Analytical solution for ground states

To minimize the energy at zero Kelvin, it is convenient, in a first step, to consider n and c =

m/n as continuous variables, with 0 ≤ c ≤ 1. Equation 4 becomes :

F̂ (n, c, T = 0) = nẼ(c) +
1

n
K̃(c) , (5)

with:

Ẽ(c) = 2cEA
Int + (1− c)EZ

Int (EA
Int, E

Z
Int > 0)

K̃(c) = K
1 + c

1 + c+ c2
(K > 0)

We omit T = 0 and now have to minimize F̂ (n, c) with respect to n and c. From ∂F̂ /∂n = 0, we

obtain n2 = K̃(c)/Ẽ(c), hence :

F̂ (n(c), c) ≡ F̂ (c) = 2
√
Ẽ(c)K̃(c) (6)

The minimization of equation 6 with respect to c then gives :

dẼ(c)

dc
K̃(c) + Ẽ(c)

dK̃(c)

dc
= 0 (7)

Somewhat lengthy calculations show that, for 0 < c < 1, equation 7 has a solution only for

1/2 < EA
Int/E

Z
Int < 1, in which case the unique solution is not a minimum. In fact, F̂ (n, c, T = 0)

is a surface with a downward facing concavity. Minimization of F̂ (c) is then possible only for

c = 0 (zigzag) and c = 1 (armchair). This corresponds to a phase separation between two different

domains, separated by a line EZ
Int = 4EA

Int/3.

We now consider n and m as discrete quantities. As a result, two integers nm and nm + 1

can be defined as nm <
√
K̃(c)/Ẽ(c) < nm + 1 where

√
K̃(c)/Ẽ(c) is the real minimum of
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the continuous function F̂ . A two-phase coexistence is then observed when F̂ (nm, c, T = 0) =

F̂ (nm+1, c, T = 0). For c = 0 and c = 1, this leads to vertical lines separated by K/n(n+1) and

horizontal lines separated byK/3n(n+1), respectively, as presented in Figure 3-a of the main text.

(6,5) selectivity

Figure S1 displays the (n,m) dependence of the free energy, and the corresponding probability

distribution, for interfacial energies stabilizing a (6, 5) nanotube.

FIG. S1. (Color online) a) Example of (n,m) dependent contribution to the free energy F (n,m) =

E(n,m) − TS(n,m), calculated for EZ
Int = 250 meV / bond and EA

Int = 150 meV / bond and T =

973 K. b) Corresponding P (n,m) probability distribution of chiralities. The minimum of F (n,m) is set

to zero, hence the maximum of P (n,m) is equal to 1. In this example, the (6, 5) chirality has the lowest

F (n,m), about 100 meV below (7, 5).
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Chirality Maps at different temperatures

Figure S2 shows the evolution of the chirality maps when increasing the temperature from 1000

to 1400 K.

FIG. S2. (Color online) a) Chirality map at 1000 K. Iso-n (resp. iso-m) values are delimited by full black

(resp. dashed blue) lines. Metallic tubes, for which (n−m) is a multiple of 3, are shown in brick red, and

semi-conducting ones are flesh-colored. The parameter space for armchair (metallic) and (n, n − 1) and

(n, n− 2) (semi-conducting) tubes is larger than for other chiralities. b) Chirality map at 1400 K.
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